Merck
CN
  • Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery.

Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery.

International journal of biological macromolecules (2015-02-15)
Tarun Agarwal, S N Gautham Hari Narayana, Kunal Pal, Krishna Pramanik, Supratim Giri, Indranil Banerjee
ABSTRACT

The present study delineates preparation, characterization and application of calcium alginate (CA)-carboxymethyl cellulose (CMC) beads for colon-specific oral drug delivery. Here, we exploited pH responsive swelling, mucoadhesivity and colonic microflora-catered biodegradability of the formulations for colon-specific drug delivery. The CA-CMC beads were prepared by ionic gelation method and its physicochemical characterization was done by SEM, XRD, EDAX, DSC and texture analyzer. The swelling and mucoadhesivity of the beads was found higher at the simulated colonic environment. Variation was more prominent in compositions with lower CMC concentrations. CA-CMC formulations degraded slowly in simulated colonic fluid, however the degradation rate increased drastically in the presence of colonic microflora. In vitro release study of anticancer drug 5-fluorouracil (5-FU) showed a release (>90%) in the presence of colonic enzymes. A critical analysis of drug release profile along with FRAP (fluorescence recovery after photobleaching) study revealed that the presence of CMC in the formulation retarded the release rate of 5-FU. 5-FU-loaded formulations were tested against colon adenocarcinoma cells (HT-29). Cytotoxicity data, nuclear condensation-fragmentation and apoptosis analysis (by flow cytometry) together confirmed the therapeutic potential of the CA-CMC formulations. In conclusion, CA-CMC beads can be used for colon-specific drug delivery.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Fluorouracil, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Fluorouracil, meets USP testing specifications
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
5-Fluorouracil, ≥99% (HPLC), powder
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Supelco
Calcium ion solution for ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
USP
Fluorouracil, United States Pharmacopeia (USP) Reference Standard
Supelco
5-Fluorouracil, analytical standard
Supelco
Fluorouracil, Pharmaceutical Secondary Standard; Certified Reference Material
Fluorouracil, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Supelco
Calcium standard for AAS, analytical standard, 1.000 g/L Ca+2 in hydrochloric acid, traceable to BAM
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, Vetec, reagent grade, 96%