Skip to Content
Merck
CN
  • Profiling of stable isotope enrichment in specialized metabolites using liquid chromatography and multiplexed nonselective collision-induced dissociation.

Profiling of stable isotope enrichment in specialized metabolites using liquid chromatography and multiplexed nonselective collision-induced dissociation.

Analytical chemistry (2014-10-10)
Zhenzhen Wang, A Daniel Jones
ABSTRACT

Engineering of specialized metabolites in plants, microbes, and other organisms is hindered by significant knowledge gaps about metabolic pathways responsible for metabolite accumulation and degradation. While isotopic tracers have provided important information about metabolic fluxes in central metabolism, limitations of mass spectrometric strategies for quantifying stable isotope incorporation into both intact metabolites and specific substructures have slowed extension of these techniques to large specialized metabolites. This report describes the application of electrospray ionization with data-independent multiplexed nonselective collision induced dissociation (CID) on a time-of-flight mass spectrometer. This strategy yields quasi-simultaneous collection, on the chromatographic time scale, of mass spectra with different degrees of fragment ion formation without biases introduced by precursor mass selection or selective ion activation and provides measurements of stable isotope enrichments in intact metabolites and individual substructures. The utility and precision of these analyses is demonstrated by labeling acylsugar metabolites in glandular trichomes of tomato (Solanum lycopersicum) using (13)CO2 and analyzing (13)C enrichments in acylsugar specialized metabolites. The high precision and avoidance of mass bias provide a promising tool for extending metabolic flux analyses to complex specialized metabolites in a wide range of organisms.

MATERIALS
Product Number
Brand
Product Description

Supelco
Methanol, analytical standard
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sulfuric acid, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology