Skip to Content
Merck
CN
  • The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats.

The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats.

Journal of the American Association for Laboratory Animal Science : JAALAS (2015-02-05)
Robert T Dauchy, Melissa A Wren, Erin M Dauchy, Aaron E Hoffman, John P Hanifin, Benjamin Warfield, Michael R Jablonski, George C Brainard, Steven M Hill, Lulu Mao, Georgina L Dobek, Lynell M Dupepe, David E Blask
ABSTRACT

Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a 'safelight' emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physi- ologic parameters. Male Sprague-Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean ± 1 SD) were high in the dark phase (197.5 ± 4.6 pg/mL) and low in the light phase (2.6 ± 1.2 pg/mL) of control condi- tions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Potassium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Heptane, biotech. grade, ≥99%
Sigma-Aldrich
Heptane, anhydrous, 99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Boron trifluoride-methanol solution, 50% w/w in methanol
Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
Potassium chloride, tested according to Ph. Eur.
Supelco
Potassium chloride solution, ~3 M KCl, saturated with silver chloride
Supelco
Potassium chloride solution, conductance standard B acc. to ISO 7888, 0.01 M KCl
Supelco
Potassium chloride solution, conductance standard A acc. to ISO 7888, 0.1 M KCl
Supelco
Potassium chloride solution, conductance standard C acc. to ISO 7888, 0.001 M KCl
Supelco
ISA (ionic strength adjustment solution: 1 M KCl), 1 M KCl
Sigma-Aldrich
Sodium hydroxide, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, Molecular Biology, 10 M in H2O
Supelco
Boron trifluoride-methanol solution, ~10% (~1.3 M), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Potassium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Potassium chloride, ≥99.99% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Boron trifluoride-methanol solution, 14% in methanol
Sigma-Aldrich
Potassium chloride solution, 0.075 M, sterile-filtered, BioXtra, suitable for cell culture