Skip to Content
Merck
CN
  • Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers.

Coordinate hyperactivation of Notch1 and Ras/MAPK pathways correlates with poor patient survival: novel therapeutic strategy for aggressive breast cancers.

Molecular cancer therapeutics (2014-09-26)
Suruchi Mittal, Ankur Sharma, Sai A Balaji, Manju C Gowda, Rajan R Dighe, Rekha V Kumar, Annapoorni Rangarajan
ABSTRACT

Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1(high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Supelco
Methyl Ethyl Ketone, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-Butanone, analytical standard
Sigma-Aldrich
2-Butanone, ReagentPlus®, ≥99%
Sigma-Aldrich
2-Butanone, ACS reagent, ≥99.0%