Skip to Content
Merck
CN
  • Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association (2015-01-03)
Paul Holvoet, Anna Rull, Anabel García-Heredia, Sílvia López-Sanromà, Benjamine Geeraert, Jorge Joven, Jordi Camps
ABSTRACT

There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted.

MATERIALS
Product Number
Brand
Product Description

Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard