Skip to Content
Merck
CN
  • Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer.

Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer.

Oncogene (2014-09-16)
H Chung, Y S Lee, R Mayoral, D Y Oh, J T Siu, N J Webster, D D Sears, J M Olefsky, L G Ellies
ABSTRACT

Obesity and inflammation are both risk factors for a variety of cancers, including breast cancer in postmenopausal women. Intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of breast cancer, and also reduces obesity-associated inflammation and insulin resistance, but whether the two effects are related is currently unknown. We tested this hypothesis in a postmenopausal breast cancer model using ovariectomized, immune-competent female mice orthotopically injected with Py230 mammary tumor cells. Obesity, whether triggered genetically or by high-fat diet (HFD) feeding, increased inflammation in the mammary fat pad and promoted mammary tumorigenesis. The presence of tumor cells in the mammary fat pad further enhanced the local inflammatory milieu. Tumor necrosis factor-alpha (TNF-α) was the most highly upregulated cytokine in the obese mammary fat pad, and we observed that TNF-α dose-dependently stimulated Py230 cell growth in vitro. An ω-3 PUFA-enriched HFD (referred to as fish oil diet, FOD) reduced inflammation in the obese mammary fat pad in the absence of tumor cells and inhibited Py230 tumor growth in vivo. Although some anti-inflammatory effects of ω-3 PUFAs were previously shown to be mediated by the G-protein-coupled receptor 120 (GPR120), the FOD reduced Py230 tumor burden in GPR120-deficient mice to a similar degree as observed in wild-type mice, indicating that the effect of FOD to reduce tumor growth does not require GPR120 in the host mouse. Instead, in vitro studies demonstrated that ω-3 PUFAs act directly on tumor cells to activate c-Jun N-terminal kinase, inhibit proliferation and induce apoptosis. Our results show that obesity promotes mammary tumor progression in this model of postmenopausal breast cancer and that ω-3 PUFAs, independent of GPR120, inhibit mammary tumor progression in obese mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Tumor Necrosis Factor-α from mouse, TNF-α, recombinant, expressed in E. coli, powder, suitable for cell culture
Sigma-Aldrich
(L)-Dehydroascorbic acid
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dehydro-L-(+)-ascorbic acid dimer, ≥80% (enzymatic)
Sigma-Aldrich
Propidium iodide solution