Skip to Content
Merck
CN
  • A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning.

A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning.

Biochimie (2015-08-05)
Stanislav Terekhov, Ivan Smirnov, Tatiana Bobik, Olga Shamborant, Marina Zenkova, Elena Chernolovskaya, Danil Gladkikh, Arkadii Murashev, Igor Dyachenko, Viktor Palikov, Yulia Palikova, Vera Knorre, Alexey Belogurov, Natalie Ponomarenko, G Michael Blackburn, Patrick Masson, Alexander Gabibov
ABSTRACT

Butyrylcholinesterase is a stoichiometric bioscavenger against poisoning by organophosphorus pesticides and nerve agents. The low level of expression and extremely rapid clearance of monomeric recombinant human butyrylcholinesterase (rhBChE) from bloodstream (t½≈2 min) limits its pharmaceutical application. Recently (Ilyushin at al., PNAS, 2013) we described a long-acting polysialylated recombinant butyrylcholinesterase (rhBChE-CAO), stable in the bloodstream, that protects mice against 4.2 LD50 of VR. Here we report a set of modifications of the initial rhBChE expression vector to improve stability of the enzyme in the bloodstream and increase its production in CHO cells by introducing in the expression cassette: (i) the sequence of the natural human PRAD-peptide in frame with rhBChE gene via "self-processing" viral F2A peptide under control of an hEF/HTLV promoter, and (ii) previously predicted in silico MAR 1-68 and MAR X-29 sequences. This provides fully tetrameric rhBChE (4rhBChE) at 70 mg/l, that displays improved pharmacokinetics (t½ = 32 ± 1.2 h, MRT = 43 ± 2 h). 3D Fluorescent visualization and distribution of (125)I-labeled enzyme reveals similar low level 4rhBChE and rhBChE-CAO accumulation in muscle, fat, and brain. Administered 4rhBChE was mainly catabolized in the liver and breakdown products were excreted in kidney. Injection of 1.2 LD50 and 1.1 LD50 of paraoxon to BALB/c and knockout BChE-/- mice pre-treated with 4rhBChE (50 mg/kg) resulted in 100% and 78% survival, respectively, without perturbation of long-term behavior. In contrast, 100% mortality of non-pre-treated mice was observed. The high expression level of 4rhBChE in CHO cells permits consideration of this new expression system for manufacturing BChE as a biopharmaceutical.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥98%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
Sigma-Aldrich
Potassium phosphate tribasic, Vetec, reagent grade, 97%
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium hydrogencarbonate, −40-+140 mesh, ≥95%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium bicarbonate, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium bicarbonate, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Butyrylthiocholine iodide, ≥98%