Skip to Content
Merck
CN
  • Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.

Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.

Scientific reports (2015-11-10)
Motoko Maekawa, Yoshimi Iwayama, Tetsuo Ohnishi, Manabu Toyoshima, Chie Shimamoto, Yasuko Hisano, Tomoko Toyota, Shabeesh Balan, Hideo Matsuzaki, Yasuhide Iwata, Shu Takagai, Kohei Yamada, Motonori Ota, Satoshi Fukuchi, Yohei Okada, Wado Akamatsu, Masatsugu Tsujii, Nobuhiko Kojima, Yuji Owada, Hideyuki Okano, Norio Mori, Takeo Yoshikawa
ABSTRACT

The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, Vetec, reagent grade, ≥98%
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%