Skip to Content
Merck
CN
  • Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

Journal of dairy science (2015-05-20)
N Haddaji, S Khouadja, K Fdhila, B Krifi, M Ben Ismail, R Lagha, K Bakir, A Bakhrouf
ABSTRACT

Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexadecane, anhydrous, ≥99%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetone, ≥99%, FCC, FG
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hexadecane, ReagentPlus®, 99%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Hexadecane, Vetec, reagent grade, 98%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Menadione, meets USP testing specifications
Sigma-Aldrich
Menadione, crystalline
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required