- Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production.
Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production.
Autophagic cell death has recently been implicated in the pathophysiology of tendinopathy. Prostaglandin E2 (PGE2), a known inflammatory mediator of tendinitis, inhibits tenofibroblast proliferation in vitro; however, the underlying mechanism is unclear. The present study investigated the relationship between PGE2 production and autophagic cell death in mechanically loaded human patellar tendon fibroblasts (HPTFs) in vitro. Cultured HPTFs were subjected to exogenous PGE2 treatment or repetitive cyclic mechanical stretching. Cell death was determined by flow cytometry with acridine orange/ethidium bromide staining. Induction of autophagy was assessed by autophagy markers including the formation of autophagosomes and autolysosomes (by electron microscopy, AO staining, and formation of GPF-LC3-labeled vacuoles) and the expression of LC3-II and BECN1 (by western blot). Stretching-induced PGE2 release was determined by ELISA. Exogenous PGE2 significantly induced cell death and autophagy in HPTFs in a dose-dependent manner. Blocking autophagy using inhibitors 3-methyladenine and chloroquine, or small interfering RNAs against autophagy genes Becn-1 and Atg-5 prevented PGE2-induced cell death. Cyclic mechanical stretching at 8% and 12% magnitudes for 24 h significantly stimulated PGE2 release by HPTFs in a magnitude-dependent manner. In addition, mechanical stretching induced autophagy and cell death. Blocking PGE2 production using COX inhibitors indomethacin and celecoxib significantly reduced stretching-induced autophagy and cell death. Taken together, cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of PGE2 production.