Skip to Content
Merck
CN
  • KRAS(G12D)-mediated oncogenic transformation of thyroid follicular cells requires long-term TSH stimulation and is regulated by SPRY1.

KRAS(G12D)-mediated oncogenic transformation of thyroid follicular cells requires long-term TSH stimulation and is regulated by SPRY1.

Laboratory investigation; a journal of technical methods and pathology (2015-07-07)
Minjing Zou, Essa Y Baitei, Roua A Al-Rijjal, Ranjit S Parhar, Futwan A Al-Mohanna, Shioko Kimura, Catrin Pritchard, Huda BinEssa, Azizah A Alanazi, Ali S Alzahrani, Mohammed Akhtar, Abdullah M Assiri, Brian F Meyer, Yufei Shi
ABSTRACT

KRAS(G12D) can cause lung cancer rapidly, but is not sufficient to induce thyroid cancer. It is not clear whether long-term serum thyroid stimulating hormone (TSH) stimulation can promote KRAS(G12D)-mediated thyroid follicular cell transformation. In the present study, we investigated the effect of long-term TSH stimulation in KRAS(G12D) knock-in mice and the role of Sprouty1 (SPRY1) in KRAS(G12D)-mediated signaling. We used TPO-KRAS(G12D) mice for thyroid-specific expression of KRAS(G12D) under the endogenous KRAS promoter. Twenty TPO-KRAS(G12D) mice were given anti-thyroid drug propylthiouracil (PTU, 0.1% w/v) in drinking water to induce serum TSH and 20 mice were without PTU treatment. Equal number of wild-type littermates (TPO-KRAS(WT)) was given the same treatment. The expression of SPRY1, a negative regulator of receptor tyrosine kinase (RTK) signaling, was analyzed in both KRAS(G12D)-and BRAF(V600E)-induced thyroid cancers. Without PTU treatment, only mild thyroid enlargement and hyperplasia were observed in TPO-KRAS(G12D) mice. With PTU treatment, significant thyroid enlargement and hyperplasia occurred in both TPO-KRAS(G12D) and TPO-KRAS(WT) littermates. Thyroids from TPO-KRAS(G12D) mice were six times larger than TPO-KRAS(WT) littermates. Distinct thyroid histology was found between TPO-KRAS(G12D) and TPO-KRAS(WT) mice: thyroid from TPO-KRAS(G12D) mice showed hyperplasia with well-maintained follicular architecture whereas in TPO-KRAS(WT) mice this structure was replaced by papillary hyperplasia. Among 10 TPO-KRAS(G12D) mice monitored for 14 months, two developed follicular thyroid cancer (FTC), one with pulmonary metastasis. Differential SPRY1 expression was demonstrated: increased in FTC and reduced in papillary thyroid cancer (PTC). The increased SPRY1 expression in FTC promoted TSH-RAS signaling through PI3K/AKT pathway whereas downregulation of SPRY1 by BRAF(V600E) in PTC resulted in both MAPK and PI3K/AKT activation. We conclude that chronic TSH stimulation can enhance KRAS(G12D)-mediated oncogenesis, leading to FTC. SPRY1 may function as a molecular switch to control MAPK signaling and its downregulation by BRAF(V600E) favors PTC development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Propyl-2-thiouracil, ≥98%
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Hematoxylin, certified by the BSC