Merck
CN
  • Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

Biotechnology progress (2015-03-05)
Shivika Sharma, Shamsher S Kanwar, Priyanka Dogra, Ghanshyam S Chauhan
ABSTRACT

Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Nitrophenyl palmitate, lipase substrate
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
1-Propanol, anhydrous, 99.7%
Sigma-Aldrich
1-Propanol, natural, ≥98%, FG
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Chloroform-d, 99.8 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Chloroform-d, 99.8 atom % D, contains 0.05 % (v/v) TMS
Sigma-Aldrich
Chloroform-d, ≥99.8 atom % D, contains 0.5 wt. % silver foil as stabilizer, 0.03 % (v/v) TMS
Sigma-Aldrich
Chloroform-d, ≥99.8 atom % D, contains 0.5 wt. % silver foil as stabilizer
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Chloroform-d, 99.8 atom % D
Sigma-Aldrich
Chloroform-d, 99.8 atom % D, contains 1 % (v/v) TMS
Sigma-Aldrich
Chloroform-d, "100%", 99.96 atom % D, contains 0.5 wt. % silver wire as stabilizer
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Chloroform-d, "100%", 99.96 atom % D
Sigma-Aldrich
Tetramethylsilane, ≥99.0% (GC)
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Chloroform-d, "100%", 99.96 atom % D, contains 0.03 % (v/v) TMS
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Chloroform-d, ≥99.8 atom % D, anhydrous
Sigma-Aldrich
Tetramethylsilane, electronic grade, ≥99.99% trace metals basis
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer