Merck
CN
  • Protection of polyunsaturated fatty acids against ruminal biohydrogenation: Pilot experiments for three approaches.

Protection of polyunsaturated fatty acids against ruminal biohydrogenation: Pilot experiments for three approaches.

Journal of animal science (2015-06-27)
C A Alvarado-Gilis, C C Aperce, K A Miller, C L Van Bibber-Krueger, D Klamfoth, J S Drouillard
ABSTRACT

Three methods for protection of PUFA against biohydrogenation by ruminal microorganisms were evaluated. In method 1 a blend of ground flaxseed, calcium oxide, and molasses was processed through a dry extruder. In method 2, a blend of ground flaxseed, soybean meal, molasses, and baker's yeast was moistened and prewarmed, allowing enzymes from yeast to produce reducing sugars, and the mixture was subsequently processed through a dry extruder like in method 1. In method 3, ground flaxseed was embedded within a matrix of dolomitic lime hydrate (L-Flaxseed) as a protective barrier against biohydrogenation. Dolomitic lime was mixed with ground flaxseed, water was added, the mixture was blended in a high-speed turbulizer, and the resulting material was then dried to form a granular matrix. Methods 1 and 2 were tested in 1 study (study 1), and method 3 was tested in 2 studies (studies 2 and 3). In study 1, 60 crossbred yearling steers (BW = 475 ± 55 kg) were used in a randomized complete block design experiment. Steers were fed for 12 d with a diet consisting of 48.73% steam-flaked corn, 35% wet corn gluten feed, 12% corn silage, and 4.27% vitamins and minerals (Control). For the other 4 treatments, a portion of wet corn gluten feed was replaced with 5% of unprocessed or extruded mixtures as described for methods 1 and 2. Steers were weighed, and jugular blood samples were taken for analysis of long-chain fatty acids (LCFA) on d 0 and 12 of the study. Both methods failed to improve resistance of PUFA against biohydrogenation (P > 0.1). In study 2, in situ fatty acid disappearance was evaluated for ground flaxseed (Flaxseed) or L-Flaxseed using 6 ruminally fistulated Holstein steers. The proportion of α-linolenic acid (ALA) that was resistant to ruminal biohydrogenation was approximately 2-fold greater for L-Flaxseed than for Flaxseed (P < 0.05). In study 3, 45 steers (269 ± 19.5 kg initial BW) were used in a randomized complete block design. Steers were fed diets containing 0% Flaxseed (No Flaxseed), and in treatments 2 and 3, a portion of flaked corn was replaced with Flaxseed or L-Flaxseed. Animals were weighed and blood samples were taken on d 0, 7, and 14 of the study, and LCFA were analyzed. The use of L-Flaxseed in study 3 increased plasma concentrations of ALA to more than 4 times the level observed in cattle fed unprotected flaxseed, suggesting the dolomitic lime hydrate was effective as a protective barrier against biohydrogenation.

MATERIALS
Product Number
Brand
Product Description

Boron, monofilament, 10m, diameter 0.1mm
Boron, monofilament, 10m, diameter 0.2mm
Boron, monofilament, 5m, diameter 0.1mm
Boron, monofilament, 5m, diameter 0.2mm
Boron, monofilament, 20m, diameter 0.1mm
Boron, monofilament, 50m, diameter 0.1mm
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Water, BioPerformance Certified
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Boron, monofilament, 20m, diameter 0.2mm
Boron, monofilament, 200m, diameter 0.1mm
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Boron, crystalline, −60 mesh, 99% trace metals basis
Sigma-Aldrich
Rhein, technical grade
Sigma-Aldrich
Boron, crystalline, 1 cm, 99.7% trace metals basis
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
Boron, crystalline, 90-95%, −325 mesh
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Rhein
Sigma-Aldrich
Boron, ≥95% (boron), amorphous powder
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Carbon-12C dioxide, 99.99 atom % 12C
Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Calcium oxide, nanopowder, <160 nm particle size (BET), 98%