Skip to Content
Merck
CN
  • Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis.

Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis.

Methods (San Diego, Calif.) (2011-09-14)
Kevin Seekell, Hillel Price, Stella Marinakos, Adam Wax
ABSTRACT

Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-EGF Receptor antibody, Mouse monoclonal, clone 225, purified from hybridoma cell culture
Sigma-Aldrich
Gold(III) chloride trihydrate, ≥99.9% trace metals basis