Merck
CN
HomeEnzyme Activity AssaysDipeptidyl Peptidase IV

Dipeptidyl Peptidase IV

Enzyme Commission (EC) Number: 3.4.14.5
Primary Accession Number: P27487 (DPP4_HUMAN)

Synonyms:

DPPIV, dipeptidyl aminopeptidase IV, CD26, glycoprotein GP110, glycylproline aminopeptidase, T cell triggering molecule Tp103, X-PDAP, THAM, and adenosine deaminase binding protein (ADAbp).

Physical Properties and In Vivo Processing

Native DPPIV is a ubiquitous type II transmembrane glycoprotein and a serine protease of the S9 prolyl-oligopeptidase family. In vivo, it is synthesized with a signal peptide which functions as the membrane anchoring domain.1,2 There is an 88% sequence homology between the human and porcine kidney enzymes. 3 Both the human and porcine kidney enzymes exist as homodimers with a subunit molecular weight of approx. 30 kDa. The high mannose 100 kDa DPPIV precursor is processed in the Golgi to yield a 124 kDa heavily N-and O-linked mature glycoprotein.4 It is then sorted to the apical membrane through the concerted action of both N- and O-linked glycans and it’s association with lipid microdomains.5 The porcine enzyme contains 18.3% carbohydrates, of which the glycan composition is 0.9% fucose, 3.4% mannose, 5.1% galactose, 8.2% glucosamine, and 0.7% sialic acid.1,2

pI: 5.26 (porcine)
Extinction Coefficient: E1% = 11.5 (280 nm)7 (porcine)

Dipeptidyl Peptidase

Physiological Properties and Clinical Implications

DPPIV is highly expressed on endothelial cells, epithelial cells and lymphocytes.8,9,10 It is also present in plasma in its soluble form.11

DPPIV is involved in the regulation of several important physiological processes: 12,13,14

  • Immune system
  • Inflamation
  • CNS
  • Endocrine functions
  • Bone marrow mobilization
  • Cancer growth
  • Cell adhesion
  • Glucose hemostasis
  • Sepsis/severe infection

Natural DPPIV substrates include: 12,13

  • Glucagon-like peptides-1 & 2
  • Glucose–dependent insulinotropic peptide
  • Neuropeptide Y
  • Substance P
  • Peptide YY
  • IGF-1
  • Prolactin
  • hCGα
  • Growth Hormone Releasing Factor
  • LHα
  • Thyrotropinα
  • Enkephalins
  • Vasostatin
  • Eotaxin
  • Interferon-γ inducible protein
  • IFN-inducible T-cell alpha-chemoattractant
  • Procalcitonin15
  • Macrophage-derived chemokine
  • Monokine induced by Interferon-γ

Natural DPPIV ligands include:12,16,17,18,19

  • Adenosine deaminase-I and II
  • Renal Na+/H+ ion exchanger NHE3 isoform
  • Fibronectin

DPPIV inhibitors have been found to improve glucose tolerance and preserve islet function in mice.20 DPPIV inhibitors were found to block entry of HIV-1 or HIV-2 into T lymphoblastoid and monocytoid cell lines.21

Specificity and Kinetics

DPPIV has a post-proline dipeptidyl aminopeptidase activity that hydrolyzes N-terminal dipeptides from the unsubstituted N-terminus of peptides with the sequence of X-Pro-Z and X-Ala-Z.

Specificity and Kinetics

The optimum pH for activity is 7.4-8.7.13,22 At pH 7.0 DPPIV exhibits about 45% of maximal activity and at pH 9.6 it exhibits about 90% of maximal activity. Below pH 5.0 the enzyme is essentially inactive.11,23

We determine the enzymatic activity of DPPIV using the chromogenic substrate Gly-Pro-p-nitroanilde. Reported KM values are 0.66 mM for Gly-Pro-2-naphthylamide24 and 1 mM for Ala-Ala-2-naphthylamide.23

Enzymatic Assay

Unit Definition: One unit will produce 1.0 µmole of p-nitroaniline from Gly-L-Pro p-nitroanilide per min in 100 mM Tris-HCl at pH 8.0 at 37 °C.

Stopped Rate Spectrophotometric Determination using a Microplate Reader

Enzymatic Assay

CONDITIONS: T = 37 °C, pH = 8.0, A405nm, Inc. = 15 minutes

REAGENTS:

  1. 0.1 M Tris, pH 8.0 at 37 °C
  2. 1 mM Gly-Pro-pNA Solution
  3. 1 mM p-Nitroaniline Solution (pNA)
  4. Dipeptidyl Peptidase Enzyme Solution

(Immediately before use prepare the following in cold reagent A. Dilute to obtain 0.04 - 0.08 units/mL.)

PROCEDURE:

  1. Set up microtitre 96-well plate with the following standards:
    S1 = 20 µL 1 mM pNA (20 nmols)
    S2 = 40 µL 1 mM pNA (40 nmols)
    S3 = 60 µL 1 mM pNA (60 nmols)
    S4 = 80 µL 1 mM pNA (80 nmols)
    S5 = 100 µL 1 mM pNA (100 nmols)
    Make all wells up to 0.1 mL with Reagent A.
  2. Pipette in enzyme samples as follows:
    T1 = 10 µL
    T2 = 20 µL
    T3 = 30 µL
    T4 = 40 µL
    T5 = 50 µL
    Make all wells up to 0.1 mL with Reagent A.
  3. Add 0.1 mL of Reagent B to each well (including standards) to start the reaction.
  4. Incubate at 37 °C for 15 minutes.
  5. Read absorbance at 405 nm in a microplate reader.

CALCULATIONS:
Plot a standard curve of A405nm versus nmoles of pNA. Calculate nmoles/minute and hence from this determine mmoles/min/mL of enzyme.

FINAL ASSAY CONCENTRATION:
In a 0.2 mL reaction mix, the final concentrations are 100 mM Tris, 0.5 mM Gly-Pro-pNA, and varying amounts of enzyme.

This procedure is for informational purposes. For a current copy of our quality control procedure, please contact our Technical Service Department.

Synthetic Substrates

Gly-Pro 4-methoxy-β-naphthylamide
Gly-Pro 4-methoxy-β-naphthylamide
Gly-Pro p-nitroanilide hydrochloride
Gly-Pro p-nitroanilide p-toluenesulfonate salt
Gly-Pro-7-amido-4-methylcoumarin hydrobromide

Inhibitors

diisopropyl fluorophosphate
phenylmethanesulfonyl fluoride
Ile-Pro-Ile (Diprotin A)
KR-62436

Enzymes

Dipeptidyl Peptidase, human
Dipeptidyl Peptidase from porcine kidney

Solubility and Stability

The porcine enzyme (Prod. No. D7052) is supplied as a lyophilized powder and is soluble in 100 mM Tris HCl buffer, pH 8.0 (1 vial/mL), yielding a clear, colorless solution. The human enzyme (Prod. No. D4943) is supplied as a solution in 10 mM Tris-HCl pH 7.6, 200 mM NaCl, 1 mM EDTA, 10 % glycerol.

As supplied, these products should be stable for a minimum of one year when stored properly at –20 °C.

References

1.
Misumi Y, Hayashi Y, Arakawa F, Ikehara Y. 1992. Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1131(3):333-336. https://doi.org/10.1016/0167-4781(92)90036-y
2.
Matter K, Hauri HP. 1991. Intracellular transport and conformational maturation of intestinal brush border hydrolases. Biochemistry. 30(7):1916-1923. https://doi.org/10.1021/bi00221a026
3.
Weihofen WA, Liu J, Reutter W, Saenger W, Fan H. 2004. Crystal Structure of CD26/Dipeptidyl-peptidase IV in Complex with Adenosine Deaminase Reveals a Highly Amphiphilic Interface. Journal of Biological Chemistry. 279(41):43330-43335. https://doi.org/10.1074/jbc.m405001200
4.
Matter K, Hauri HP. 1991. Intracellular transport and conformational maturation of intestinal brush border hydrolases. Biochemistry. 30(7):1916-1923. https://doi.org/10.1021/bi00221a026
5.
Alfalah M, Jacob R, Naim HY. 2002. Intestinal Dipeptidyl Peptidase IV Is Efficiently Sorted to the Apical Membrane through the Concerted Action of N- andO-Glycans as Well as Association with Lipid Microdomains. Journal of Biological Chemistry. 277(12):10683-10690. https://doi.org/10.1074/jbc.m109357200
6.
Fukasawa KM, Fukasawa K, Hiraoka BY, Harada M. 1981. Comparison of dipeptidyl peptidase IV prepared from pig liver and kidney. Biochimica et Biophysica Acta (BBA) - Enzymology. 657(1):179-189. https://doi.org/10.1016/0005-2744(81)90141-8
7.
Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ, Young AR. 1976. Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. 157(1):169-182. https://doi.org/10.1042/bj1570169
8.
Hegen M, Kameoka J, Dong R, Morimoto C, Schlossman SF. 1997. Structure of CD26 (Dipeptidyl Peptidase IV) and Function in Human T Cell Activation.109-116. https://doi.org/10.1007/978-1-4757-9613-1_15
9.
De Meester I, Korom S, Van Damme J, Scharpé S. 1999. CD26, let it cut or cut it down. Immunology Today. 20(8):367-375. https://doi.org/10.1016/s0167-5699(99)01486-3
10.
Andersen TF. Kirsten Drotner et al.: Øjenåbnere / Kirsten Drotner et al.: Tankestreger / Torben Fridberg et al.: Mønstre i mangfoldigheden. MedieKultur. 15(29):4. https://doi.org/10.7146/mediekultur.v15i29.1137
11.
Durinx C, Lambeir A, Bosmans E, Falmagne J, Berghmans R, Haemers A, Scharpé S, De Meester I. 2000. Molecular characterization of dipeptidyl peptidase activity in serum. 267(17):5608-5613. https://doi.org/10.1046/j.1432-1327.2000.01634.x
12.
GORRELL M. 2005. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. 108(4):277-292. https://doi.org/10.1042/cs20040302
13.
Aertgeerts K. 2004. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Science. 13(2):412-421. https://doi.org/10.1110/ps.03460604
14.
Busek P. 2004. Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. The International Journal of Biochemistry & Cell Biology. 36(3):408-421. https://doi.org/10.1016/s1357-2725(03)00262-0
15.
Wrenger S, Kähne T, Bohuon C, Weglöhner W, Ansorge S, Reinhold D. 2000. Amino-terminal truncation of procalcitonin, a marker for systemic bacterial infections, by dipeptidyl peptidase IV (DP IV). 466(1):155-159. https://doi.org/10.1016/s0014-5793(99)01779-2
16.
Shibuya-Saruta, H., et al.,. 1996. 1996 Human serum dipeptidyl peptidase IV (DPPIV) and its unique properties. Clin. Lab. Anal. . 10 435-440
17.
Morrison ME, Vijayasaradhi S, Engelstein D, Albino AP, Houghton AN. 1993. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase.. 177(4):1135-1143. https://doi.org/10.1084/jem.177.4.1135
18.
Girardi AC, Degray BC, Nagy T, Biemesderfer D, Aronson PS. 2001. Association of Na+-H+ Exchanger Isoform NHE3 and Dipeptidyl Peptidase IV in the Renal Proximal Tubule. Journal of Biological Chemistry. 276(49):46671-46677. https://doi.org/10.1074/jbc.m106897200
19.
Cheng H, Abdel-Ghany M, Pauli BU. 2003. A Novel Consensus Motif in Fibronectin Mediates Dipeptidyl Peptidase IV Adhesion and Metastasis. Journal of Biological Chemistry. 278(27):24600-24607. https://doi.org/10.1074/jbc.m303424200
20.
Reimer M, Holst J, Ahren B. 2002. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice.717-727. https://doi.org/10.1530/eje.0.1460717
21.
Callebaut C, Krust B, Jacotot E, Hovanessian A. 1993. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science. 262(5142):2045-2050. https://doi.org/10.1126/science.7903479
22.
1992. Internationales Symposium für Kinderchirurgie. Acta Chir Austriaca. 24(4):210-210. https://doi.org/10.1007/bf02601745
23.
PUSCHEL G, MENTLEIN R, HEYMANN E. 1982. Isolation and Characterization of Dipeptidyl Peptidase IV from Human Placenta. Eur J Biochem. 126(2):359-365. https://doi.org/10.1111/j.1432-1033.1982.tb06788.x
24.
Caporale C, Fontanella A, Petrilli P, Pucci P, Molinaro MF, Picone D, Auricchio S. 1985. Isolation and characterization of dipeptidyl peptidase IV from human meconium. 184(2):273-277. https://doi.org/10.1016/0014-5793(85)80621-9
Sign In To Continue

To continue reading please sign in or create an account.

Don't Have An Account?