Merck
CN
Search Within

273104

应用筛选条件
关键词:'273104'
显示 1-6 共 6 条结果 关于 "273104" 范围 论文
Ji Han Kim et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 25(38), 9060-9070 (2019-04-16)
Organic light-emitting diodes are currently under research to achieve high efficiency and long life by using thermally activated delayed fluorescence (TADF) materials. In particular, many studies have focused on ensuring high efficiency in fluorescent devices by introducing TADF materials. Herein
Gina Ambrosio et al.
Scientific reports, 10(1), 4114-4114 (2020-03-07)
Chemical reaction with diazonium molecules has revealed to be a powerful method for the surface chemical modification of graphite, carbon nanotubes and recently also of graphene. Graphene electronic structure modification using diazonium molecules is strongly influenced by graphene growth and
John Greenwood et al.
ACS nano, 9(5), 5520-5535 (2015-04-22)
We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and
Lakshya Daukiya et al.
Nanoscale, 13(5), 2972-2981 (2021-01-29)
Covalent functionalization is one of the most efficient ways to tune the properties of layered materials in a highly controlled manner. However, molecular chemisorption on semiconducting transition metal dichalcogenides remains a delicate task due to the inertness of their surface.
JANUS WEDGES: a new approach towards nucleobase-pair recognition.
Chemical Communications (Cambridge, England), 21, 2443-2444 (1996)
Thi Mien Trung Huynh et al.
Nanoscale, 9(1), 362-368 (2016-12-08)
Highly oriented pyrolytic graphite (HOPG) can be covalently grafted with aryl radicals generated via the electrochemical reduction of 3,5-bis-tert-butyl-diazonium cations (3,5-TBD). The structure of the grafted layer and its stability under electrochemical conditions were assessed with electrochemical scanning tunneling microscopy
1/1