Merck
CN
Search Within

52131

应用筛选条件
关键词:'52131'
显示 1-8 共 8 条结果 关于 "52131" 范围 论文
Andréa Hemmerlin et al.
Progress in lipid research, 51(2), 95-148 (2011-12-27)
When compared to other organisms, plants are atypical with respect to isoprenoid biosynthesis: they utilize two distinct and separately compartmentalized pathways to build up isoprene units. The co-existence of these pathways in the cytosol and in plastids might permit the
Hyungjin Eoh et al.
Tuberculosis (Edinburgh, Scotland), 89(1), 1-11 (2008-09-17)
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-d-erythritol 4-phosphate
Sinead Heuston et al.
Microbiology (Reading, England), 158(Pt 7), 1684-1693 (2012-04-17)
Isoprenoids may be synthesized via one of two pathways, the classical mevalonate pathway or the alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. While the majority of bacteria utilize a single pathway for isoprenoid biosynthesis, Listeria monocytogenes is unusual in possessing the complete
Sina I Odejinmi et al.
Tetrahedron, 68(43), 8937-8941 (2012-10-11)
2-C-methyl-D-erythritol-4-phosphate (MEP) is a key chemical intermediate of the non-mevalonate pathway for isoprenoid biosynthesis employed by many pathogenic microbes. MEP is also the precursor for the synthesis of 4-diphosphocytidyl-2-C-methyl D-erythritol (CDP-ME), another key intermediate of the non-mevalonate pathway. As this
Tomohisa Kuzuyama et al.
Proceedings of the Japan Academy. Series B, Physical and biological sciences, 88(3), 41-52 (2012-03-28)
Isoprenoids are a diverse group of molecules found in all organisms, where they perform such important biological functions as hormone signaling (e.g., steroids) in mammals, antioxidation (e.g., carotenoids) in plants, electron transport (e.g., ubiquinone), and cell wall biosynthesis intermediates in
J Kipchirchir Bitok et al.
ACS chemical biology, 7(10), 1702-1710 (2012-07-31)
There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition
Sinéad Heuston et al.
Microbiology (Reading, England), 158(Pt 6), 1389-1401 (2012-04-03)
Isoprenoid biosynthesis is essential for cell survival. Over 35 000 isoprenoid molecules have been identified to date in the three domains of life (bacteria, archaea and eukaryotes), and these molecules are involved in a wide variety of vital biological functions. Isoprenoids
Andrea Sass et al.
Antimicrobial agents and chemotherapy, 62(5) (2018-02-15)
The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr, the second
1/1