Merck
CN
  • A fluorescence lifetime study of virginiamycin S using multifrequency phase fluorometry.

A fluorescence lifetime study of virginiamycin S using multifrequency phase fluorometry.

Biochemistry (1991-07-23)
K Clays, M Di Giambattista, A Persoons, Y Engelborghs
摘要

Using multifrequency phase fluorometry, fluorescence lifetimes have been assigned to the different protolytic forms of the antibiotic virginiamycin S. These lifetimes are 0.476 +/- 0.005 ns for the uncharged form, 1.28 +/- 0.2 and 7.4 +/- 0.2 ns for the zwitterionic form, 1.19 +/- 0.01 ns for the negatively charged form, and 1.9 +/- 0.1 ns for the double negatively charged form. The assignments are based on lifetime measurements as a function of pH, volume percent ethanol, and excitation wavelength. Excited-state proton transfer is taken into account. It is complete at pH values lower than 1, and no fluorescence of the fully protonated charged form is observed. At pH 8, an excited-state pK* increase is calculated, but proton association is too slow to cause excited-state proton transfer. The addition of divalent cations, at pH 9.4, increases the lifetime of the negatively charged form to a value dependent upon the specific nature of the cation (7.58 +/- 0.06 ns for Mg2+, 6.54 +/- 0.02 ns for Ca2+, and 3.74 +/- 0.05 ns for Ba2+). Monovalent cations do not influence the lifetimes, indicating that their binding to the macrocycle does not influence the fluorescent moiety. The model compound 3-hydroxypicolinamide shows an analogous behavior, but the retrieved lifetime can differ significantly.