Merck
CN
  • Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis.

Immobilization of membrane-bounded (S)-mandelate dehydrogenase in sol-gel matrix for electroenzymatic synthesis.

Bioelectrochemistry (Amsterdam, Netherlands) (2015-04-10)
Ievgen Mazurenko, Wissam Ghach, Gert-Wieland Kohring, Christelle Despas, Alain Walcarius, Mathieu Etienne
摘要

Membrane-bounded (S)-mandelate dehydrogenase has been immobilized on the surface of glassy carbon and carbon felt electrodes by encapsulation in a silica film obtained by sol-gel chemistry. Such bioelectrochemical system has been used for the first time for electroenzymatic conversion of (S)-mandelic acid to phenylglyoxylic acid. Apparent Km in this sol-gel matrix was 0.7 mM in the presence of ferrocenedimethanol, a value in the same order of magnitude as reported previously for vesicles in solution with other electron acceptors, i.e., Fe(CN)6(3-) or 2,6-dichloroindophenol. The bioelectrode shows very good operational stability for more than 6 days. This stability was definitively improved by comparison to a bioelectrode prepared by simple adsorption of the proteins on the electrode surface (fast activity decrease during the first 15 h of experiment). Optimal electroenzymatic reaction was achieved at pH9 and 40 °C. Apparent Km of the protein activity was 3 times higher in carbon felt electrode than on glassy carbon surface, possibly because of transport limitations in the porous architecture of the carbon felt. A good correlation was found between electrochemical data and chromatographic characterization of the reaction products in the bioelectrochemical reactor.

材料
货号
品牌
产品描述

Sigma-Aldrich
L-赖氨酸 单盐酸盐, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-赖氨酸 单盐酸盐, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
苯乙醛酸, 97%
Sigma-Aldrich
L-赖氨酸 单盐酸盐, BioUltra, ≥99.5% (AT)