Merck
CN
  • Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses.

Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses.

The Journal of physiology (2013-06-05)
Kiyoshi Egawa, Junko Yamada, Tomonori Furukawa, Yuchio Yanagawa, Atsuo Fukuda
摘要

The electrophysiological properties and functional role of GABAergic signal transmission from neurons to the gap junction-coupled astrocytic network are still unclear. GABA-induced astrocytic Cl⁻ flux has been hypothesized to affect the driving force for GABAergic transmission by modulating [Cl⁻]o. Thus, revealing the properties of GABA-mediated astrocytic responses will deepen our understanding of GABAergic signal transmission. Here, we analysed the Cl⁻ dynamics of neurons and astrocytes in CA1 hippocampal GABAergic tripartite synapses, using Cl⁻ imaging during GABA application, and whole cell recordings from interneuron-astrocyte pairs in the stratum lacunosum-moleculare. Astrocytic [Cl⁻]i was adjusted to physiological conditions (40 mm). Although GABA application evoked bidirectional Cl⁻ flux via GABAA receptors and mouse GABA transporter 4 (mGAT4) in CA1 astrocytes, a train of interneuron firing induced only GABAA receptor-mediated inward currents in an adjacent astrocyte. A GAT1 inhibitor increased the interneuron firing-induced currents and induced bicuculline-insensitive, mGAT4 inhibitor-sensitive currents, suggesting that synaptic spillover of GABA predominantly induced the astrocytic Cl⁻ efflux because GABAA receptors are localized near the synaptic clefts. This GABA-induced Cl⁻ efflux was accompanied by Cl⁻ siphoning via the gap junctions of the astrocytic network because gap junction inhibitors significantly reduced the interneuron firing-induced currents. Thus, Cl⁻ efflux from astrocytes is homeostatically maintained within astrocytic networks. A gap junction inhibitor enhanced the activity-dependent depolarizing shifts of reversal potential of neuronal IPSCs evoked by repetitive stimulation to GABAergic synapses. These results suggest that Cl⁻ conductance within the astrocytic network may contribute to maintaining GABAergic synaptic transmission by regulating [Cl⁻]o.