Merck
CN
  • Different downstream pathways for Notch signaling are required for gliogenic and chondrogenic specification of mouse mesencephalic neural crest cells.

Different downstream pathways for Notch signaling are required for gliogenic and chondrogenic specification of mouse mesencephalic neural crest cells.

Mechanisms of development (2008-02-27)
Kanenobu Ijuin, Kouichi Nakanishi, Kazuo Ito
摘要

We examined the roles of Notch signaling and fibroblast growth factors (FGFs) in the gliogenesis of mouse mesencephalic neural crest cells. The present study demonstrated that Notch activation or FGF treatment promotes the differentiation of glia expressing glial fibrillary acidic protein. Notch activation or FGF2 exposure during the first 48 h in culture was critical for glial differentiation. The promotion of gliogenesis by FGF2 was significantly suppressed by the inhibition of Notch signaling using Notch-1 siRNA. These data suggest that FGFs activate Notch signaling and that this activation promotes the gliogenic specification of mouse mesencephalic neural crest cells. Notch activation and FGF treatment have been shown to participate in the chondrogenic specification of these cells [Nakanishi, K., Chan, Y.S., Ito, K., 2007. Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech. Dev. 124, 190-203]. Therefore, we analyzed whether or not there were differences between gliogenic and chondrogenic specifications in the downstream pathway of the Notch receptor. Whereas the activation of only the Deltex-mediated pathway was sufficient to promote glial specification, the activation of both RBP-J- and Deltex-dependent pathways was required for chondrogenic specification. These results suggest that the different downstream pathways of the Notch receptor participate in the gliogenic and chondrogenic specification of mouse mesencephalic neural crest cells.