Merck
CN
  • Molecular characterization of atrogin-1/F-box protein-32 (FBXO32) and F-box protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): Expression across tissues in response to feed deprivation.

Molecular characterization of atrogin-1/F-box protein-32 (FBXO32) and F-box protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): Expression across tissues in response to feed deprivation.

Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology (2010-07-06)
Beth M Cleveland, Jason P Evenhuis
摘要

The characteristic increase in protein catabolism during muscle atrophy is largely the result of an increase in E3 ubiquitin ligase expression, specifically that of atrogin-1, or FBXO32, which functions to polyubiquitinate proteins. In rainbow trout, the cDNA sequences of two E3 ubiquitin ligase F-box proteins, FBXO32 and FBXO25, were characterized and their expression across tissues in response to feed deprivation was determined. The cDNA sequence for FBXO32 encodes a protein 355 amino acids long and is 97% identical to the homologous protein in salmon, 85% to zebrafish and 72% identical to both human and mouse. The cDNA for FBXO25 encodes a protein 356 amino acids in length that is 98% identical to the homologous protein in salmon, 84% to zebrafish, and 75% to human. After 28days of feed deprivation, FBXO32 expression increased by approximately 13-fold, 3-fold, and 5-fold in white muscle, red muscle, and intestine, respectively (P<0.05). Expression of FBXO32 and FBXO25 in kidney decreased 0.3-fold and 0.2-fold, respectively, and FBXO25 expression decreased by 0.2-fold in liver (P<0.05). These results indicate that these protein sequences are conserved and suggest that the up-regulation of FBXO32 is associated with skeletal and smooth muscle atrophy that occurs during fasting.