Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C
CAS Number:
Molecular Weight:
12.01
NACRES:
NA.23
UNSPSC Code:
12352103
form
powder
composition
Carbon, >95 wt. % , Oxygen, <2 wt. %
bulk density
0.04 g/mL
Looking for similar products? Visit Product Comparison Guide
General description
Low dimensional carbon nanoplatelet with a large lateral dimension (>25μ) and few in plane defects. Highly hydrophobic. Few layer exfoliation in the medium can be obtained by standard methods. It has been used with success as electrical conductive additive in powder coating formulation among other properties.
Application
- Graphene (nano)composite materials
- Conductive coatings
- Anti-corrosion coatings
- Conductive Inks
- Energy Storage
- Electrode materials
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - STOT SE 3
target_organs
Respiratory system
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Regulatory Information
新产品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Ashish Asthana et al.
ACS applied materials & interfaces, 6(11), 8859-8867 (2014-05-23)
Superhydrophobic surfaces resisting water penetration into their texture under dynamic impact conditions and offering simultaneously additional functionalities can find use in a multitude of applications. We present a facile, environmentally benign, and economical fabrication of highly electrically conductive, polymer-based superhydrophobic
Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review
Jang BZ, and Zhamu A.
J. Mater. Sci., 43(15), 5092-5101 (2008)
Ladislav Kavan et al.
ACS nano, 5(1), 165-172 (2010-12-04)
Commercial graphene nanoplatelets in the form of optically transparent thin films on F-doped SnO(2) (FTO) exhibited high electrocatalytic activity toward I(3)(-)/I(-) redox couple, particularly in electrolyte based on ionic liquid (Z952). The charge-transfer resistance, R(CT), was smaller by a factor
Mohammad-Bagher Ebrahim-Habibi et al.
Scientific reports, 9(1), 1273-1273 (2019-02-06)
Investigation of non-covalent interaction of hydrophobic surfaces with the protein G (PrG) is necessary due to their frequent utilization in immunosensors and ELISA. It has been confirmed that surfaces, including carbonous-nanostructures (CNS) could orient proteins for a better activation. Herein
Articles
Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.
自从十多年前被发现以来,碳-石墨烯的二维(2D)同素异形体一直是密集的多学科研究工作的主题。
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service