Merck
CN
  • Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide synthesis in mangrove soils.

Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide synthesis in mangrove soils.

Canadian journal of microbiology (2012-03-31)
Mengjun Peng, Qingyi Xie, Huo Hu, Kui Hong, Jonathan D Todd, Andrew W B Johnston, Youguo Li
ABSTRACT

The dddP gene encodes an enzyme that cleaves dimethylsulfoniopropionate (DMSP) into dimethyl sulfide (DMS) plus acrylate and has been identified in various marine bacteria and some fungi. The diversity of dddP genes was investigated by culture-independent PCR-based analysis of metagenomic DNA extracted from 4 mangrove soils in Southern China. A phylogenetic tree of 144 cloned dddP sequences comprised 7 groups, 3 of which also included dddP genes from previously identified Ddd(+) (DMSP-dependent DMS production) bacteria. However, most (69%) of the DddP sequences from the mangroves were in 4 other subgroups that did not include sequences from known bacteria, demonstrating a high level of diversity of this gene in these environments. Each clade contained clones from all of the sample sites, suggesting that different dddP types are widespread in mangroves of different geographical locations. Furthermore, it was found the dddP genotype distribution was remarkably influenced by the soil properties pH, available sulfur, salt, and total nitrogen.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfide, ≥99%
Sigma-Aldrich
Dimethyl sulfide, anhydrous, ≥99.0%
Sigma-Aldrich
Dimethyl sulfide, redistilled, ≥99%, FCC, FG
Sigma-Aldrich
Dimethyl sulfide, natural, ≥99%, FCC, FG
Supelco
Dimethyl sulfide, analytical standard