Skip to Content
Merck
CN
  • Comparison of TiO2 nanoparticle and graphene-TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes.

Comparison of TiO2 nanoparticle and graphene-TiO2 nanoparticle composite phototoxicity to Daphnia magna and Oryzias latipes.

Chemosphere (2014-07-23)
Shibin Li, Xuan Pan, Lindsay K Wallis, Zhaoyang Fan, ZuLiang Chen, Stephen A Diamond
ABSTRACT

With a dramatic rise in complexity, needs of nanotoxicology research go beyond simple forms of nanomaterials. This study compared the phototoxicity of nano-TiO2 and graphene-TiO2 nanocomposite (GNP). GNP was synthesized based on a hydrothermal method, which simultaneously performed the reduction of graphene oxide and nano-TiO2 loading. A series of acute toxicity tests of nano-TiO2, graphene and GNP was performed on two aquatic organisms, Daphnia magna and Oryzias latipes. Fast and substantial agglomeration and sedimentation of nanoparticles in test media and surface attachment of nano-TiO2 and GNP on D. magna surface was observed. Similar phototoxicity of nano-TiO2 and GNP for both species existed, though compared with nano-TiO2, GNP had a 2.3-fold increase in visible light photocatalytic ROS generation. In summary, this study demonstrated the significance of illumination spectrum, particle behavior, and species sensitivity on nanophototoxicity, and the needs for research on increasingly sophisticated functional materials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Graphite, powder, <20 μm, synthetic
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 6 mm, 99.995% trace metals basis
Sigma-Aldrich
Graphite, powder, <45 μm, ≥99.99% trace metals basis
Sigma-Aldrich
Graphite, powder, <150 μm, 99.99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Graphite, rod, L 150 mm, diam. 3 mm, low density, 99.995% trace metals basis
Sigma-Aldrich
Graphite, flakes
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Titanium, wire reel, 5m, diameter 0.20mm, annealed, 99.6+%
Titanium, rod, 500mm, diameter 1.5mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 500mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 3.0mm, annealed, 99.6+%
Titanium, rod, 490mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 5mm, annealed, 99.6+%
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Titanium, rod, 500mm, diameter 6mm, annealed, 99.6+%