Skip to Content
Merck
CN
  • Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Combination of direct infusion mass spectrometry and gas chromatography mass spectrometry for toxicometabolomic study of red blood cells and serum of mice Mus musculus after mercury exposure.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-02-11)
M A García-Sevillano, T García-Barrera, F Navarro, N Abril, C Pueyo, J López-Barea, J L Gómez-Ariza
ABSTRACT

Although mercury (Hg) is an important environmental and occupational pollutant, its toxicological effects, especially in serum and red blood cells (RBCs), have been scarcely studied. A toxicometabolomics workflow based on high resolution mass spectrometry approaches has been applied to investigate the toxicological effects of Hg in Mus musculus mice after subcutaneous injection for 10 days, which produced inflammation and vacuolization, steatosis and karyolysis in the hepatic tissue. To this end, direct infusion mass spectrometry (DIMS) of polar and lipophilic extracts from serum and RBCs, using positive and negative mode of acquisition (ESI+/ESI-), and gas chromatography-mass spectrometry were used. A quantitative analysis of reversible oxidized thiols in serum proteins demonstrated a strong oxidative stress induction in the liver of Hg-exposed mice. Endogenous metabolites alterations were identified by partial least squares-discriminant analysis (PLS-DA). Mercury-exposed mice show perturbations in energy metabolism, amino acid metabolism, membrane phospholipid breakdown and oxidative stress-related metabolites in serum along the exposure. This work reports for the first time the effects of Hg-exposure on RBCs metabolic pathways, and reveals disturbances in glycolysis, membrane turnover, glutathione and ascorbate metabolisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Methanol, purification grade, 99.8%
Millipore
Urea solution, suitable for microbiology, 40% in H2O
Galactose, European Pharmacopoeia (EP) Reference Standard
Supelco
N-Methyl-bis(trifluoroacetamide), derivatization grade (GC derivatization), LiChropur, ≥99.0% (GC)
Millipore
D-(+)-Galactose, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Chlorotrimethylsilane, puriss., ≥99.0% (GC)
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Chlorotrimethylsilane, ≥98.0% (GC)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Methoxyamine hydrochloride, 98%
Sigma-Aldrich
Chlorotrimethylsilane, purified by redistillation, ≥99%
Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
D-(−)-Fructose, tested according to Ph. Eur.
Millipore
D-(−)-Fructose, ≥99.0% (HPLC), suitable for microbiology
Sigma-Aldrich
D-(+)-Galactose, meets analytical specification of Ph. Eur., BP
Sigma-Aldrich
Protease Inhibitor Cocktail powder, for general use, lyophilized powder
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur