Skip to Content
Merck
CN
  • Effect of excipients on the particle size of precipitated pioglitazone in the gastrointestinal tract: impact on bioequivalence.

Effect of excipients on the particle size of precipitated pioglitazone in the gastrointestinal tract: impact on bioequivalence.

The AAPS journal (2014-07-30)
Masaru Sugita, Makoto Kataoka, Masahisa Sugihara, Susumu Takeuchi, Shinji Yamashita
ABSTRACT

This study sought to understand the reasons for the bioinequivalence of a newly developed generic product of pioglitazone hydrochloride and to improve its formulation so that it is equivalent to that of the reference listed drug (RLD). In this clinical study, despite a similar in vitro dissolution profile, the new oral product exhibited a lower plasma concentration of pioglitazone compared to the RLD. The strong pH-dependency of pioglitazone solubility as a weak base indicates that pioglitazone would precipitate in the small intestine after being dissolved in the stomach. Thus, in vitro experiments were performed to investigate the effect of excipients on the particle size distribution of precipitated pioglitazone. Then, the impact of particle size on in vivo absorption was discussed. The precipitated pioglitazone from the RLD showed a peak for small particles (less than 1 μm), which was not observed in the precipitate from the new product. As an excipient, hydroxypropyl cellulose (HPC) influenced the particle size of precipitated pioglitazone, and the amount of HPC in the formulation was increased to the same level as that in the RLD. The precipitate from this improved product showed approximately the same particle size distribution as that of the RLD and successfully demonstrated bioequivalence in the clinical study. In conclusion, for drugs with low solubility, this type of analysis of the particle size distribution of precipitated drugs, in addition to the dissolution test, may help to obtain a better in vitro-in vivo correlation for oral absorption and to develop a bioequivalent product.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Ammonium formate, ≥99.995% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammonium formate, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Ammonium formate, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Supelco
Methanol, analytical standard
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ammonium formate, reagent grade, 97%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Supelco
Ammonium formate solution, 10 mM in H2O, suitable for HPLC
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard