Skip to Content
Merck
CN
  • Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis.

Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis.

Shock (Augusta, Ga.) (2014-07-01)
Raquel Rodríguez-González, José Luis Martín-Barrasa, Ángela Ramos-Nuez, Ana María Cañas-Pedrosa, María Teresa Martínez-Saavedra, Miguel Ángel García-Bello, Josefina López-Aguilar, Aurora Baluja, Julián Álvarez, Arthur S Slutsky, Jesús Villar
ABSTRACT

Oxygen therapy is currently used as a supportive treatment in septic patients to improve tissue oxygenation. However, oxygen can exert deleterious effects on the inflammatory response triggered by infection. We postulated that the use of high oxygen concentrations may be partially responsible for the worsening of sepsis-induced multiple system organ dysfunction in an experimental clinically relevant model of sepsis. We used Sprague-Dawley rats. Sepsis was induced by cecal ligation and puncture. Sham-septic controls (n = 16) and septic animals (n = 32) were randomly assigned to four groups and placed in a sealed Plexiglas cage continuously flushed for 24 h with medical air (group 1), 40% oxygen (group 2), 60% oxygen (group 3), or 100% oxygen (group 4). We examined the effects of these oxygen concentrations on the spread of infection in blood, urine, peritoneal fluid, bronchoalveolar lavage, and meninges; serum levels of inflammatory biomarkers and reactive oxygen species production; and hematological parameters in all experimental groups. In cecal ligation and puncture animals, the use of higher oxygen concentrations was associated with a greater number of infected biological samples (P < 0.0001), higher serum levels of interleukin-6 (P < 0.0001), interleukin-10 (P = 0.033), and tumor necrosis factor-α (P = 0.034), a marked decrease in platelet counts (P < 0.001), and a marked elevation of reactive oxygen species serum levels (P = 0.0006) after 24 h of oxygen exposure. Oxygen therapy greatly influences the progression and clinical manifestation of multiple system organ dysfunction in experimental sepsis. If these results are extrapolated to humans, they suggest that oxygen therapy should be carefully managed in septic patients to minimize its deleterious effects.

MATERIALS
Product Number
Brand
Product Description

Supelco
Aluminum oxide, activated, neutral, Brockmann Activity I
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Aluminum oxide, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
Aluminum oxide, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
Aluminum oxide, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
Aluminum oxide, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
Aluminum oxide, 99.997% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Supelco
Aluminum oxide, for the determination of hydrocarbons
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Aluminum oxide, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%
Sigma-Aldrich
Aluminum oxide, single crystal substrate, <0001>
Sigma-Aldrich
Aluminum oxide, activated, Brockmann I, standard grade, neutral
Sigma-Aldrich
Aluminum oxide, standard grade, Brockmann I, activated, basic
Sigma-Aldrich
Aluminum oxide, Brockmann I, standard grade, activated, acidic
Sigma-Aldrich
Aluminum oxide, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
Aluminum oxide, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum oxide, Corundum, α-phase, -100 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
Aluminum oxide, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
Aluminum oxide, pellets, 3 mm
Sigma-Aldrich
Aluminum oxide, pore size 58 Å, ~150 mesh