Skip to Content
Merck
CN
  • An experimental investigation of the effect of mechanical and biochemical stimuli on cell migration within a decellularized vascular construct.

An experimental investigation of the effect of mechanical and biochemical stimuli on cell migration within a decellularized vascular construct.

Annals of biomedical engineering (2014-07-06)
William S Sheridan, Alan J Ryan, Garry P Duffy, Fergal J O'Brien, Bruce P Murphy
ABSTRACT

The goal of this study was to promote rapid repopulation of the medial layer of decellularized tissues for use as vascular grafts. We utilized a combined approach of biochemical and mechanical stimuli to enhance repopulation of decellularized porcine arterial tissue. Chitosan β-glycerophosphate loaded with hepatocyte growth factor (HGF) was injected into a channel in the artery wall while rat mesenchymal stem cells (rMSCs) were injected in two channels located 120° to this channel. In a second group rMSCs were injected into channels located at intervals of 120°. Both groups were subjected to 7 days mechanical stimuli in comparison to non-dynamically conditioned static controls. The combined effect of the biochemical and mechanical stimuli demonstrated that the repopulation zone was significantly enhanced, maximum migration achieved was 1.8 times more than that of the static HGF cultured control and 10 times higher than the average migration for statically cultured scaffolds without biochemical stimulus. Human umbilical vein endothelial cells were also successfully adhered to the scaffold and dynamically cultured. The response of medially injected cells to the biomechanically and biochemically altered environment demonstrated that enhanced circumferential scaffold repopulation could be achieved.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium acetate, anhydrous, Molecular Biology, ≥99%
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, suitable for luminescence, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium acetate, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium acetate, puriss. p.a., ACS reagent, reag. Ph. Eur., anhydrous
Sigma-Aldrich
Sodium acetate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium acetate, Vetec, reagent grade, 98%
USP
Sodium acetate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium acetate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Ammonium hydroxide solution, BioUltra, ~1 M NH3 in H2O (T)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
DL-Cysteine, technical grade
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
SAFC
L-Glutamine
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder