Skip to Content
Merck
CN
  • Minimal detection of nuclear mutations in XP-V and normal cells treated with oxidative stress inducing agents.

Minimal detection of nuclear mutations in XP-V and normal cells treated with oxidative stress inducing agents.

Journal of biochemical and molecular toxicology (2014-08-29)
Kimberly N Herman, Shannon Toffton, Scott D McCulloch
ABSTRACT

Elevated levels of reactive oxygen species (ROS) can be induced by exposure to various chemicals and radiation. One type of damage in DNA produced by ROS is modification of guanine to 7,8-dihydro-8-oxoguanine (8-oxoG). This particular alteration to the chemistry of the base can inhibit the replication fork and has been linked to mutagenesis, cancer, and aging. In vitro studies have shown that the translesion synthesis polymerase, DNA polymerase η (pol η), is able to efficiently bypass 8-oxoG in DNA. In this study, we wanted to investigate the mutagenic effects of oxidative stress, and in particular 8-oxoG, in the presence and absence of pol η. We quantified levels of oxidative stress, 8-oxoG levels in DNA, and nuclear mutation rates. We found that most of the 8-oxoG detected were localized to the mitochondrial DNA, opposed to the nuclear DNA. We also saw a corresponding lack of mutations in a nuclear-encoded gene. This suggests that oxidative stress' primary mutagenic effects are not predominantly on genomic DNA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid solution, for amino acid analysis, ~6 M in H2O
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
tert-Butyl hydroperoxide solution, 5.0-6.0 M in decane
Sigma-Aldrich
tert-Butyl hydroperoxide solution, 70 wt. % in H2O
Sigma-Aldrich
tert-Butyl hydroperoxide solution, 5.0-6.0 M in nonane
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Anti-DNP antibody produced in rabbit, whole antiserum
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Methylene Blue solution, suitable for microbiology
Sigma-Aldrich
Methylene Blue solution, suitable for microscopy
Supelco
Menadione (K3), analytical standard
Sigma-Aldrich
Methylene Blue solution, 0.05 wt. % in H2O
Sigma-Aldrich
Menadione, meets USP testing specifications
Sigma-Aldrich
Menadione, crystalline