- In vitro performance of spacers for aerosol delivery during adult mechanical ventilation.
In vitro performance of spacers for aerosol delivery during adult mechanical ventilation.
During mechanical ventilation, different aerosol generators are employed with various interfaces. The objective of this study was to evaluate the performance of a range of spacers, including a new device called Combihaler® designed for connection with both nebulizers and pressurized Metered-Dose Inhalers (pMDIs). To assess the spacers, we used a ventilator and the Dual Adult Training and Test Lung (model 5600i, Michigan Instruments). Ventilation parameters were measured with and without spacers in volume-controlled and pressure-controlled mode. A filter was placed at the end of the endotracheal tube to measure aerosol delivery. Amikacin (1 g/8 mL) and salbutamol (5 mg/5 mL) were nebulized with an Aeroneb Solo® connected to its T-adapter or the Combihaler® spacer. Salbutamol (100 μg/actuation with 10 actuations) and beclomethasone (250 μg/actuation with 10 actuations) were delivered with a pMDI connected to a Minispacer®, an ACE® spacer, or a Combihaler® spacer. Drug delivery measurements were performed in volume-controlled mode in dry and humidified conditions. Drug deposits on the filter were assayed. The use of spacers and the T-adapter did not change the ventilation parameters (p>0.9). Aerosol delivery of salbutamol and Amikacin by nebulization increased up to three-fold with the Combihaler® compared with the T-adapter in humidified and nonhumidified conditions (p<0.05). Aerosol delivery of salbutamol and beclometasone by pMDI increased up to three-fold with the Combihaler® and the ACE® spacer compared with the Minispacer® in humidified and nonhumidified conditions (p<0.05). Aerosol delivery by pMDIs and vibrating mesh nebulizers using either a T-adapter or spacers was reduced by up to 62.5% in a humidified circuit compared with a nonhumidified circuit. Aerosol delivery via pMDIs and vibrating mesh nebulizers is greater with large spacers (Combihaler® and ACE®) than with smaller spacers (Minispacer®) or a T-adapter, in both humidified and nonhumidified conditions. In humidified conditions, the aerosol delivery decreased with all spacers.