Skip to Content
Merck
CN
  • Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner.

Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner.

PloS one (2014-02-08)
Jiajie Guo, Guosheng Wu, Jiaolin Bao, Wenhui Hao, Jinjian Lu, Xiuping Chen
ABSTRACT

Cucurbitacins are a class of triterpenoids widely distributed in plant kingdom with potent anti-cancer activities both in vitro and in vivo by inducing cycle arrest, autophagy, and apoptosis. Cucurbitacin B (Cuc B), could induce S or G2/M cell cycle arrest in cancer cells while the detailed mechanisms remain to be clear. This study was designed to precisely dissect the signaling pathway(s) responsible for Cuc B induced cell cycle arrest in human lung adenocarcinoma epithelial A549 cells. We demonstrated that low concentrations of Cuc B dramatically induced G2/M phase arrest in A549 cells. Cuc B treatment caused DNA double-strand breaks (DSBs) without affecting the signal transducer and activator of transcription 3 (STAT3), the potential molecular target for Cuc B. Cuc B triggers ATM-activated Chk1-Cdc25C-Cdk1, which could be reversed by both ATM siRNA and Chk1 siRNA. Cuc B also triggers ATM-activated p53-14-3-3-σ pathways, which could be reversed by ATM siRNA. Cuc B treatment also led to increased intracellular reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-l-cysteine (NAC) pretreatment. Furthermore, NAC pretreatment inhibited Cuc B induced DNA damage and G2/M phase arrest. Taken together, these results suggested that Cuc B induces DNA damage in A549 cells mediated by increasing intracellular ROS formation, which lead to G2/M cell phase arrest through ATM-activated Chk1-Cdc25C-Cdk1 and p53-14-3-3-σ parallel branches. These observations provide novel mechanisms and potential targets for better understanding of the anti-cancer mechanisms of cucurbitacins.

MATERIALS
Product Number
Brand
Product Description

Acetylcysteine, European Pharmacopoeia (EP) Reference Standard
USP
Acetylcysteine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human ATM
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Supelco
N-Acetyl-L-cysteine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N-Acetyl-L-cysteine, suitable for cell culture, BioReagent
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
N-Acetyl-L-cysteine, BioXtra, ≥99% (TLC)
Sigma-Aldrich
N-Acetyl-L-cysteine, Vetec, reagent grade, 98%
Sigma-Aldrich
Propidium iodide solution