Skip to Content
Merck
CN
  • RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.

RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.

Scientific reports (2015-09-09)
Nicolas C Nalpas, David A Magee, Kevin M Conlon, John A Browne, Claire Healy, Kirsten E McLoughlin, Kévin Rue-Albrecht, Paul A McGettigan, Kate E Killick, Eamonn Gormley, Stephen V Gordon, David E MacHugh
ABSTRACT

Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, Vetec, reagent grade, 98%
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
N-[Tris(hydroxymethyl)methyl]acrylamide, contains ≤7% KCl, 93%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%