Skip to Content
Merck
CN
  • Tubular cell phenotype in HIV-associated nephropathy: role of phospholipid lysophosphatidic acid.

Tubular cell phenotype in HIV-associated nephropathy: role of phospholipid lysophosphatidic acid.

Experimental and molecular pathology (2015-06-17)
Kamesh R Ayasolla, Partab Rai, Shai Rahimipour, Mohammad Hussain, Ashwani Malhotra, Pravin C Singhal
ABSTRACT

Collapsing glomerulopathy and microcysts are characteristic histological features of HIV-associated nephropathy (HIVAN). We have previously reported the role of epithelial mesenchymal transition (EMT) in the development of glomerular and tubular cell phenotypes in HIVAN. Since persistent tubular cell activation of NFκB has been reported in HIVAN, we now hypothesize that HIV may be contributing to tubular cell phenotype via lysophosphatidic acid (LPA) mediated downstream signaling. Interestingly, LPA and its receptors have also been implicated in the tubular interstitial cell fibrosis (TIF) and cyst formation in autosomal dominant polycystic kidney disease (PKD). Primary human proximal tubular cells (HRPTCs) were transduced with either empty vector (EV/HRPTCs), HIV (HIV/HRPTCs) or treated with LPA (LPA/HRPTC). Immunoelectrophoresis of HIV/HRPTCs and LPA/HRPTCs displayed enhanced expression of pro-fibrotic markers: a) fibronectin (2.25 fold), b) connective tissue growth factor (CTGF; 4.8 fold), c) α-smooth muscle actin (α-SMA; 12 fold), and d) collagen I (5.7 fold). HIV enhanced tubular cell phosphorylation of ILK-1, FAK, PI3K, Akt, ERKs and P38 MAPK. HIV increased tubular cell transcriptional binding activity of NF-κB; whereas, a LPA biosynthesis inhibitor (AACOCF3), a DAG kinase inhibitor, a LPA receptor blocker (Ki16425), a NF-κB inhibitor (PDTC) and NFκB-siRNA not only displayed downregulation of a NFκB activity but also showed attenuated expression of profibrotic/EMT genes in HIV milieu. These findings suggest that LPA could be contributing to HIV-induced tubular cell phenotype via NFκB activation in HIVAN.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, Vetec, reagent grade, ≥98%
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%