Skip to Content
Merck
CN
  • Influence of the Supramolecular Micro-Assembly of Multiple Emulsions on their Biopharmaceutical Features and In vivo Therapeutic Response.

Influence of the Supramolecular Micro-Assembly of Multiple Emulsions on their Biopharmaceutical Features and In vivo Therapeutic Response.

Current drug targets (2015-11-26)
Felisa Cilurzo, Maria Chiara Cristiano, Luisa Di Marzio, Donato Cosco, Maria Carafa, Cinzia Anna Ventura, Massimo Fresta, Donatella Paolino
ABSTRACT

The ability of some surfactants to self-assemble in a water/oil bi-phase environment thus forming supramolecular structure leading to the formation of w/o/w multiple emulsions was investigated. The w/o/w multiple emulsions obtained by self-assembling (one-step preparation method) were compared with those prepared following the traditional two-step procedure. Methyl-nicotinate was used as a hydrophilic model drug. The formation of the multiple emulsion structure was evidenced by optical microscopy, which showed a mean size of the inner oil droplets of 6 μm and 10 μm for one-step and two-step multiple emulsions, respectively. The in vitrobiopharmaceutical features of the various w/o/w multiple emulsion formulations were evaluated by means of viscosimetry studies, drug release and in vitro percutaneous permeation experiments through human stratum corneum and viable epidermis membranes. The self-assembled multiple emulsions allowed a more gradual percutaneous permeation (a zero-order permeation rate) than the two-step ones. The in vivotopical carrier properties of the two different multiple emulsions were evaluated on healthy human volunteers by using the spectrophotometry of reflectance, an in vivonon invasive method. These multiple emulsion systems were also compared with conventional emulsion formulations. Our findings demonstrated that the multiple emulsions obtained by self-assembling were able to provide a more sustained drug delivery into the skin and hence a longer therapeutic action than two-step multiple emulsions and conventional emulsion formulations. Finally, our findings showed that the supramolecular micro-assembly of multiple emulsions was able to influence not only the biopharmaceutical characteristics but also the potential in vivotherapeutic response.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Hexadecanol, ≥99%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
1-Hexadecanol, 95%
Sigma-Aldrich
Methyl nicotinate, ≥99%, FG
Sigma-Aldrich
1-Hexadecanol, ReagentPlus®, 99%
Sigma-Aldrich
Methyl nicotinate, 99%
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Stearic acid, ≥95%, FCC, FG
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Stearic acid, Grade I, ≥98.5% (capillary GC)
Sigma-Aldrich
Glycerol, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Stearic acid, reagent grade, 95%
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Triethanolamine, Vetec, reagent grade, 97%
Sigma-Aldrich
Glycerol, Vetec, reagent grade, 99%
Sigma-Aldrich
Glycerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Glycerol, puriss. p.a., ACS reagent, anhydrous, dist., ≥99.5% (GC)