Merck
CN
  • Influence of the metal work function on the photocatalytic properties of TiO2 layers on metals.

Influence of the metal work function on the photocatalytic properties of TiO2 layers on metals.

Chemphyschem : a European journal of chemical physics and physical chemistry (2015-06-30)
Janna Freitag, Detlef W Bahnemann
ABSTRACT

The photocatalytic properties of titanium dioxide (TiO2 ) layers on different metal plates are investigated. The metal-semiconductor interface can be described as a Schottky contact, and is part of a depletion layer for the majority carriers in the semiconductor. Many researchers have demonstrated an increase in the photocatalytic activity, due to the formation of a metal-semiconductor contact that are obtained by deposition of small metal islands on the semiconductor. Nevertheless, the influence of a Schottky contact remains uncertain, sparking much interest in this field. The immobilization of nanoparticulate TiO2 layers by dip-coating on different metal substrates results in the formation of a Schottky contact. The recombination rate of photoinduced electron-hole pairs decreases at this interface provided that the thickness of the thin TiO2 layer has a similar magnitude to the depletion layer. The degradation of dichloroacetic acid in aqueous solution and of acetaldehyde in a gas mixture is investigated to obtain information concerning the influence of the metal work function of the back contact on the efficiency of the photocatalytic process.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium nitrate, BioXtra, ≥99.0%
Sigma-Aldrich
Potassium nitrate, BioReagent, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Potassium nitrate, 99.999% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~100 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~10 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Potassium nitrate, 99.99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Acetaldehyde, ≥99%, meets FCC analytical specification
Sigma-Aldrich
Acetaldehyde solution, 40 wt. % in H2O
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Acetaldehyde solution, 50 wt. % in ethanol
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Acetaldehyde, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetaldehyde solution, natural, 50 wt. % ethanol, FG
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Sodium bicarbonate, Vetec, reagent grade, 99%
Sigma-Aldrich
Acetaldehyde solution, 5 M in THF