Merck
CN
  • Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration.

Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration.

Atherosclerosis (2015-07-06)
Damien Denimal, Jean-Paul Pais de Barros, Jean-Michel Petit, Benjamin Bouillet, Bruno Vergès, Laurence Duvillard
ABSTRACT

Phospholipids and sphingolipids are major components of HDL. They play a critical role in HDL functionality and protective effects against atherosclerosis. As HDL are dysfunctional in type 1 diabetic patients, we ascertained whether they presented abnormalities in their phospholipid and sphingolipid profile, despite normal HDL cholesterol concentration. Using liquid chromatography-tandem mass spectrometry, we quantified the main species of phosphatidylcholines, sphingomyelins, lysophophatidylcholines, phosphatidylethanolamines, phosphatidylinositols, ceramides, plasmalogens and sphingosines 1-phosphate in the HDL2 and HDL3 from 54 type 1 diabetic patients and 50 controls. Serum HDL cholesterol was similar in the 2 groups of subjects. When data were expressed relative to the total amount of phospholipids and sphingolipids, sphingosines-1-phosphate (S1P) were 11.7% (NS) and 14.4% (p = 0.0062) lower in HDL2 and HDL3, respectively, from type 1 diabetic patients than from controls. Ceramides were 23% (p = 0.005) and 24% (borderline significance) lower in HDL2 and HDL3, respectively. The concentration of apolipoprotein M, the carrier of S1P, was similar in patients and controls. In type 1 diabetic patients compared to controls, the concentration of d18:1-S1P, the main S1P species, was decreased in total plasma (-17.0%, p < 0.0001), HDL fraction (-21.9%, p < 0.0001) and non-HDL fraction (-13.7%, p = 0.012). The concentration of ceramides was decreased in total plasma (-24.4%, p < 0.0001), HDL fraction (-27.9%, p = 0.0006) and non-HDL fraction (-22.0%, p = 0.0087). Despite normal HDL cholesterol level, the phospholipid + sphingolipid profile is impaired in HDL from type 1 diabetic patients. These abnormalities, especially the decrease in S1P, could contribute to the impaired HDL functionality observed in these patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis