Merck
CN
  • Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles.

Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles.

Environmental research (2015-08-19)
Kelly Peeters, Gaëtane Lespes, Radmila Milačič, Janez Ščančar
摘要

Biotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe(0) (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5 µm, 0.45-5 µm, 2.5-0.45 µm, and <2.5 nm was determined by sequential filtration and their concentrations in a given fraction by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Results revealed that most of the TBT or TMeT was present in fractions with particles >2.5 or <2.5 nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
庚烷, ReagentPlus®, 99%
Sigma-Aldrich
庚烷, anhydrous, 99%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
庚烷, puriss. p.a., reag. Ph. Eur., ≥99% n-heptane basis (GC)
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
三甲基氯化锡
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
三甲基氯化锡 溶液, 1.0 M in THF
Sigma-Aldrich
三甲基氯化锡 溶液, 1.0 M in hexanes
Sigma-Aldrich
三甲基苯基氢氧化铵 溶液, ~25% in H2O (1.68 M)
Sigma-Aldrich
甲醇, NMR reference standard
Sigma-Aldrich
庚烷, biotech. grade, ≥99%
Sigma-Aldrich
甲醇 溶液, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
甲醇 溶液, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
甲醇-12C, 99.95 atom % 12C
Sigma-Aldrich
甲醇, purification grade, 99.8%