Merck
CN
All Photos(4)

Documents

K0250

Sigma-Aldrich

Kainic acid monohydrate

≥99% (TLC)

Sign Into View Organizational & Contract Pricing

Synonym(s):
2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine
Empirical Formula (Hill Notation):
C10H15NO4 · H2O
CAS Number:
Molecular Weight:
231.25
MDL number:
PubChem Substance ID:
NACRES:
NA.77

Quality Level

Assay

≥99% (TLC)

form

powder

impurities

Glutamate, free

solubility

H2O: soluble

storage temp.

2-8°C

SMILES string

O.CC(=C)[C@H]1CN[C@@H]([C@H]1CC(O)=O)C(O)=O

InChI

1S/C10H15NO4.H2O/c1-5(2)7-4-11-9(10(14)15)6(7)3-8(12)13;/h6-7,9,11H,1,3-4H2,2H3,(H,12,13)(H,14,15);1H2/t6-,7+,9-;/m0./s1

InChI key

FZNZRJRSYLQHLT-SLGZUKMRSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Kainic acid is an agonist for kainate-class ionotropic glutamate receptors. Kainate receptors directly gate ion channels and are generally excitatory. Excess stimulation by Kainic acid induces neurocytosis (apoptosis) and epileptic seizures.

Application

Kainic acid is used to study mechanisms of excitation-induced apoptosis and epilepsy.

Biochem/physiol Actions

Kainic acid monohydrate is an agonist at the kainate class of ionotropic glutamate receptors, which induces seizures and neurodegeneration in vivo and is used to induce experimental epilepsy in rodents and study the mechanisms of excitation-induced neuronal apoptosis.

Features and Benefits

This compound is a featured product for Neuroscience research. Click here to discover more featured Neuroscience products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound is featured on the Excitatory Amino Acid Transporters and Glutamate Receptors (Ion Channel Family) pages of the Handbook of Receptor Classification and Signal Transduction. To browse other handbook pages, click here.

Preparation Note

Dissolve in 1-2 drops of 1N NaOH then bring to volume with water or aqueous buffer. Can be stored 1-2 days refrigerated.

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

A Kondratyev et al.
Brain research. Molecular brain research, 75(2), 216-224 (2000-02-25)
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. Recent studies have implicated apoptotic processes in this seizure-related injury. Because activation of caspase-3-like cysteine proteases
Xin Zhang et al.
Scientific reports, 9(1), 4518-4518 (2019-03-16)
Epilepsy is a multi-etiological brain dysfunction syndrome. Hippocampal neuronal damage induced by seizures may be one of the causes leading to cognitive impairment, but the underlying mechanism remains to be further elucidated. The kainic acid (KA) model of temporal lobe
Ritchie Chen et al.
Nature biotechnology, 39(2), 161-164 (2020-10-07)
Achieving temporally precise, noninvasive control over specific neural cell types in the deep brain would advance the study of nervous system function. Here we use the potent channelrhodopsin ChRmine to achieve transcranial photoactivation of defined neural circuits, including midbrain and
D Schmitz et al.
Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11003-11008 (2001-09-27)
Hippocampal mossy fibers, which are the axons of dentate granule cells, form powerful excitatory synapses onto the proximal dendrites of CA3 pyramidal cells. It has long been known that high-affinity binding sites for kainate, a glutamate receptor agonist, are present
M Nakai et al.
Journal of neurochemistry, 74(2), 647-658 (2000-01-26)
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in

Articles

DISCOVER Bioactive Small Molecules for Neuroscience

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service