Merck
CN
All Photos(2)

Documents

L3287

Sigma-Aldrich

Escort IV Transfection Reagent

Lipid reagent for transient and stable transfection of mammalian and insect cells.

Sign Into View Organizational & Contract Pricing

Synonym(s):
Gene delivery
NACRES:
NA.25

grade

for molecular biology

Quality Level

form

liquid (aqueous solution)

usage

 mL sufficient for 160-500 transfections

concentration

1 mg/mL

technique(s)

transfection: suitable

storage temp.

2-8°C

Related Categories

General description

Escort IV is a unique formulation of a proprietary polycationic lipid and a neutral non-transfecting lipid. This liposome-forming compound is used for transfection of nucleic acids into a wide variety of eukaryotic cell types.

Application

Suitable for transient and stable transfection of nucleic acids into cultured eukaryotic cells. Use approximately 4-16 μL Escort IV and 2 μg DNA per 6 cm cell culture plate. Protocol optimization provides very efficient transfection. For a list of cells that have been successfully transfected using Escort IV, see the Transfection Reagent Selection Guide.

Features and Benefits

  • Suitable for stable and transient transfection
  • Optimized for a wide variety of cell lines
  • Low toxicity
  • Compatible with both serum and serum-free transfection protocols
  • Ideal for Sf9, Sf21 and S2 insect cells

Components

Escort IV formulation:
1 mg/mL total lipid in water

Note the identity of the lipids used in Escort IV is confidential.

Caution

Do not freeze.

Principle

A stable complex is formed when Escort IV is mixed with DNA in the absence of serum. The complexes are stable and can be directly added to the cell culture medium, where they fuse with the cell membrane, releasing the DNA into the cytoplasm. Note: complex formation is inhibited by serum, but once stable complexes have formed, the presence of serum is without consequence.

Legal Information

Escort is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. Why do I see a precipitate in my cell culture after lipid-based transfection?

    The precipitate is likely excess lipid or EDTA and will probablly not affect transfection efficiency.  If your DNA plasmid is suspended in TE, be sure the concentration of EDTA is <0.3 mM, or suspend the DNA in sterile molecular biology grade water instead.

  6. Is low cell passage number an important consideration for transfection?

    Yes, we recommend cells are at a low passage when being  used for any application, including transfection.  The reason why depends on what type of cells they are.  Primary cells will undergo a finite number of divisions, and as they get closer to senesence they divide more slowly - both affecting their ability to take up DNA (transient transfection), and minimizing their abillity to incorporate the DNA into the genome (stable selection).Cultured common cell lines are often immortalized, and generally continue to aquire mutations, leading to a heterogenous population that may perform differently from cells of lower passage number - leading to results that are not reproducible.

  7. Is the size of the plasmid an important consideration for transfection?

    The size of the plasmid should be considered when selecting a transfection reagent with the best efficiency.  In general, larger sized plasmids should easily transfect with readily available transfection reagents, as along as the plasmid DNA is of high purity.

  8. Is optimizing the transfection protocol important?

    For many common cell lines, transfection reagent efficiency is very high and the protocols will not require any optimization.  For hard-to-transfect cells or those ultimately expressing a toxic protein, the protocol should be optimized for best transfection efficiency.  Taking time to optimize will give you more transfected cells with each procedure, which can mean more protein expressed and results that are reproducible.

  9. How do I choose a transfection reagent?

    There are many guides that help you select a transfection reagent.  In general, consider:The type of cell(s) you will transfectThe type of nucleic acid or protein you will introduce to the cellThe composition of your cell culture mediumThe need for stable or transient transfectionThe equipment you have availableThe other factors important to you - cost, protocol flexibility, ease of use, etc.

  10. What quality does the DNA need to be in order to use it for transfection?

    The DNA needs to be good quality or it may cause the cells to lyse and/or they won't transfect efficiently.  Plasmid DNA prepared with a column-based DNA purification kit is suitable for transfections.  Sigma's GenElute Minprep, Midiprep and Maxiprep kits work well for DNA plasmid purification.  After preparing the DNA, confirm the OD A260:A280 ratio is greater than 1.6 for use in plasmid transfections.

  11. What is transfection efficiency?

    Transfection efficiency is a measure of how many cells take up the DNA during the transfection process.  Many transfection reagents can achieve a transfection efficiency of >90% in common cell lines.  Other cell lines are hard to transfect, and require special reagents and/or techniques to achieve even a small population of transfected cells.

  12. How can I determine the efficiency of my transfection?

    Calculating transfection efficiency is very useful when optimizing transfection protocols.  Transfection efficiency can be performed using a GFP-expressing plasmid.  After transfection, cells are stained with propidium iodide and counted.  The propidium iodide provides a count of the total cells in the population, and the GFP-expressing cells provide a count of the number of cells transfected.  The transfection efficiency (%) can then be calculated by:(# GFP-expressing cells / total cell #) * 100

  13. How can I increase the efficiency of my transfection?

    Transfection efficiency is affected by many different things, including plasmid size and purity, media components present, transfection reagent selected, amount of DNA and transfection reagent used, cell density, etc.  Optimizing the protocol with respect to these concerns will allow you to achieve a higher transfection efficiency.  For many cell lines and transfection reagents, optimized protocols are already available.

  14. Can I transfect cells plated at low density?

    For most transfections, cells should be >70% confluency the day of transfection, and growing in mid-log phase.  Some transfection reagents are now designed to work with cells at low density, when required.

  15. Can antibiotics be present in the medium during transfection?

    We recommend that no antibiotics are present during transfection.  The process of transfection can make the cells somewhat more porous to allow for efficient DNA entry.  During this time, antibiotics will also enter the cells more easily and the cells may show increased cell death.  Wait until about 24 hours after transfection to resume the use of preventative antibiotics and/or start the use of selective antibiotics.

  16. What are the differences between the two Escort products?

    Each Escort transfection Reagent is a different lipid formulation.  These different formulations are more readily taken up by different cells, presumably by endocytosis.Escort III is a unique formulation of a proprietary polycationic lipid and a neutral, non-transfecting lipid.Escort IV is a a confidential lipid.

  17. Which Escort transfection reagent should I use for my application?

    Escort III is best for sensitive cells and primary cells, particularly PC-12 and Jurkat.Escort IV is excellent for mammalian cell lines, primary cells and insect cells.

  18. What is the difference between stable and transient transfection?

    When the DNA enters the nucleus of the cell, the plasmid is replicated by the cell machinery (transient transfection).  During this time, RNA is transcribed and protein translated until the plasmid DNA is lost after a few cell divisions.  This expression of the plasmid DNA, mRNA, and protein is transient (temporary).In some cases, the plasmid DNA is integrated into the host cell genome.  This is usually accompanied by forced expression using a selection antibiotic and sometimes a cloning step (to be sure all cells have the same integration site).  Once the DNA is stable, the cell line can be frozen and used to express protein for many years.  Clones may even be screened for those expressing the highest amount of protein.

  19. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

H A Clark et al.
Analytical chemistry, 71(21), 4831-4836 (1999-11-24)
Spherical optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced in sizes including 20 and 200 nm in diameter. These sensors are fabricated in a microemulsion and consist of fluorescent indicators entrapped in a polyacrylamide matrix.
Michael Povelones et al.
PLoS pathogens, 7(4), e1002023-e1002023 (2011-05-03)
Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this
Melissa D Jordan et al.
Chemical senses, 34(5), 383-394 (2009-03-19)
Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph
Zev Bryant et al.
Proceedings of the National Academy of Sciences of the United States of America, 104(3), 772-777 (2006-12-22)
Myosin VI supports movement toward the (-) end of actin filaments, despite sharing extensive sequence and structural homology with (+)-end-directed myosins. A class-specific stretch of amino acids inserted between the converter domain and the lever arm was proposed to provide
Manveen K Gupta et al.
Antioxidants & redox signaling, 8(5-6), 1081-1093 (2006-06-15)
Cardiac myocytes, upon exposure to increasing doses of norepinephrine (NE), transit from hypertrophic to apoptotic phenotype. Since reactive oxygen species (ROS) generation is attributed to both phenomena, the authors tested whether an elevation in intracellular ROS level causes such transition.

Articles

Transfection is the introduction of DNA, RNA, or proteins into eukaryotic cells and is used in research to study and modulate gene expression. Thus, transfection techniques and protocols serve as an analytical tool that facilitates the characterization of genetic functions, protein synthesis, cell growth and development.

This brief webinar provides an overview of what transfection is and the methods that are used to introduce DNA or RNA into eukaryotic cells.

Protocols

The product bulletin providin detailed use protocol for easy DNA transfection.

Product manual provides detailed protocol for easy DNA transfection.

Our Universal Transfection Reagent is a unique formulation of a proprietary polymer blend used for transient and stable transfection of nucleic acids into various eukaryotic cell lines and hard-to-transfect primary cells. This is a fast and easy protocol is compatible with serum, serum-free medium and antibiotics.

Calcium phosphate transfection is a common method for the introduction of DNA into eukaryotic cells. This protocol can be optimized for use with a wide variety of cell types.

Related Content

Browse our convenient transfection reagent selection guide to match the best reagent for your specific cell line and application needs.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service