Skip to Content
Merck
CN
  • The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration.

The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration.

The Journal of clinical investigation (2019-08-20)
Masaki Uchida, Bernhard Maier, Hitesh Kumar Waghwani, Ekaterina Selivanovitch, S Louise Pay, John Avera, EJun Yun, Ruben M Sandoval, Bruce A Molitoris, Amy Zollman, Trevor Douglas, Takashi Hato
ABSTRACT

Nature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) - the extremely small archaeal antioxidant nanocage - is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule-selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-NRF2 antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
8-Hydroxy-2′-deoxyguanosine, ≥98% (TLC)
Sigma-Aldrich
Maleimide, 99%
Sigma-Aldrich
Tamoxifen, ≥99%