Merck
CN
  • Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation.

Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation.

Molecular cell (2013-05-21)
Sichen Shao, Karina von der Malsburg, Ramanujan S Hegde
ABSTRACT

Quality control of defective mRNAs relies on their translation to detect the lesion. Aberrant proteins are therefore an obligate byproduct of mRNA surveillance and must be degraded to avoid disrupting protein homeostasis. These defective translation products are thought to be ubiquitinated at the ribosome, but the mechanism of ubiquitin ligase selectivity for these ribosomes is not clear. Here, we in vitro reconstitute ubiquitination of nascent proteins produced from aberrant mRNAs. Stalled 80S ribosome-nascent chain complexes are dissociated by the ribosome recycling factors Hbs1/Pelota/ABCE1 to a unique 60S-nascent chain-tRNA complex. The ubiquitin ligase Listerin preferentially recognizes 60S-nascent chains and triggers efficient nascent chain ubiquitination. Interfering with Hbs1 function stabilizes 80S complexes, precludes efficient Listerin recruitment, and reduces nascent chain ubiquitination. Thus, ribosome recycling factors control Listerin localization, explaining how translation products of mRNA surveillance are efficiently ubiquitinated while sparing translating ribosomes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ribonucleic acid, transfer from wheat germ, Type V, 15-19 units/mg solid
Sigma-Aldrich
Ribonucleic acid, transfer from bovine liver, Type XI, lyophilized powder
Sigma-Aldrich
Ribonucleic acid, transfer from baker's yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
Ribonucleic acid, transfer from baker's yeast (S. cerevisiae), Type X-SA, lyophilized powder
Sigma-Aldrich
Ribonucleic acid, transfer from baker's yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
Ribonucleic acid, transfer from Escherichia coli, Type XX, Strain W, lyophilized powder