Skip to Content
Merck
CN
  • Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application.

Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application.

Journal of nanoscience and nanotechnology (2014-04-18)
Zhenrong Zhang, Yanhong Tang, Chengbin Liu, Long Wan
ABSTRACT

In2S3 nanoparticle (NP) decorated self-organized TiO2 nanotube array (In2S3/TiO2 NT) hybrids were fabricated via simple successive ionic layer adsorption and reaction (SILAR) technique. The In2S3 NPs in a size of about 15 nm were found to deposit on the top surface of the highly oriented TiO2 NT while without clogging the tube entrances. The loading amount of In2S3 NPs on the TiO2 NT was controlled by the cycle number of SILAR deposition. Compared with the bare TiO2 NT, the In2S3/TiO2 NT hybrids showed stronger absorption in the visible light region and significantly enhanced photocurrent density. The photocatalytic activity of the In2S3/TiO2 NT photocatalyst far exceeds that of bare TiO2 NT in the degradation of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated solar light. After 160-min irradiation, almost 100% 2,4-D removal is obtained on the 7-In2S3/TiO2 NT prepared through seven SILAR deposition cycles, much higher than 26% on the bare TiO2 NT. After 10 successive cycles of photocatalytic process with total 1,600 min of irradiation, In2S3/TiO2 NT maintained as high 2,4-D removal efficiency as 95.1% with good stability and easy recovery, which justifies the potential of the photocatalytic system in application for the photocatalytic removal of organic pollutants such as herbicides or pesticides from water.

MATERIALS
Product Number
Brand
Product Description

Supelco
2,4-D, PESTANAL®, analytical standard
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
sulfur powder, 99.998% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Supelco
2,4-D, PESTANAL®, analytical standard
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Supelco
2,4-D, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Titanium, rod, 100mm, diameter 2mm, annealed, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.5μm, specific density 225.4μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 9.5mm, annealed, 99.99+%
Titanium, rod, 200mm, diameter 4mm, annealed, 99.6+%
Titanium, rod, 1000mm, diameter 1.5mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 6mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 6.1mm, inside diameter 5.1mm, wall thickness 0.5mm, annealed, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 0.1μm, specific density 42.8μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 1000mm, diameter 16mm, annealed, 99.6+%
Titanium, rod, 1000mm, diameter 3.0mm, annealed, 99.6+%
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Titanium, rod, 100mm, diameter 10mm, annealed, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%