Skip to Content
Merck
CN
  • The neurotoxicity of 5-S-cysteinyldopamine is mediated by the early activation of ERK1/2 followed by the subsequent activation of ASK1/JNK1/2 pro-apoptotic signalling.

The neurotoxicity of 5-S-cysteinyldopamine is mediated by the early activation of ERK1/2 followed by the subsequent activation of ASK1/JNK1/2 pro-apoptotic signalling.

The Biochemical journal (2014-06-19)
David Vauzour, John T Pinto, Arthur J L Cooper, Jeremy P E Spencer
ABSTRACT

Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ProteoMass Cytochrome c MALDI-MS Standard, vial of 10 nmol, (M+H+) 12,361.96 Da by calculation
Sigma-Aldrich
Cytochrome c from Saccharomyces cerevisiae, ≥85% based on Mol. Wt. 12,588 basis
Dopamine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
Dopamine hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Glutathione, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dopamine hydrochloride
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% (SDS-PAGE)
Sigma-Aldrich
Cytochrome c from pigeon breast muscle, ≥95% based on Mol. Wt. 12,173 basis
Sigma-Aldrich
L-Glutathione oxidized, ≥98% (HPLC)
Sigma-Aldrich
L-Glutathione oxidized, BioXtra, ≥98%
Sigma-Aldrich
L-Glutathione oxidized, ≥98%, lyophilized powder
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% based on Mol. Wt. 12,384 basis
Sigma-Aldrich
Cytochrome c from equine heart, suitable for GFC marker, BioReagent
Supelco
Dopamine hydrochloride solution, 1.0 mg/mL in methanol with 5% 1 M HCl (as free base), ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Cytochrome c from equine heart, BioUltra, ≥99% (SDS-PAGE), powder, suitable for mammalian cell culture
SAFC
L-Glutathione oxidized
Sigma-Aldrich
L-Glutathione reduced, Vetec, reagent grade, ≥98%
Sigma-Aldrich
L-Glutathione oxidized, Vetec, reagent grade, ≥98%