Skip to Content
Merck
CN
  • Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells.

Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells.

Anticancer research (2015-01-01)
Manabu Seino, Masashi Okada, Keita Shibuya, Shizuka Seino, Shuhei Suzuki, Hiroyuki Takeda, Tsuyoshi Ohta, Hirohisa Kurachi, Chifumi Kitanaka
ABSTRACT

Cancer stem cells (CSCs) are considered to contribute to the poor prognosis of ovarian cancer as a major cause of fatal recurrence. Identification of effective measures to eliminate ovarian CSCs through induction of cell death and/or loss of self-renewal capacity would, therefore, be key to successful management of ovarian cancer. The effects of resveratrol on the viability and self-renewal capacity of CSCs derived from A2780 human ovarian cancer cells were examined. The involvement of reactive oxygen species (ROS) was also investigated. At a non-toxic to normal human fibroblasts concentration, resveratrol effectively killed ovarian CSCs independently of ROS, while ROS-dependently impaired the self-renewal capacity of ovarian CSCs that survived resveratrol treatment. Our findings not only shed light on a novel mechanism of action for resveratrol but also suggest that resveratrol, or its analogs, may be useful for CSC-directed therapy against ovarian cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium pyrophosphate tetrabasic, ≥95%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%