Skip to Content
Merck
CN
  • Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells.

Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells.

Anticancer research (2015-01-01)
Manabu Seino, Masashi Okada, Keita Shibuya, Shizuka Seino, Shuhei Suzuki, Hiroyuki Takeda, Tsuyoshi Ohta, Hirohisa Kurachi, Chifumi Kitanaka
ABSTRACT

Cancer stem cells (CSCs) are considered to contribute to the poor prognosis of ovarian cancer as a major cause of fatal recurrence. Identification of effective measures to eliminate ovarian CSCs through induction of cell death and/or loss of self-renewal capacity would, therefore, be key to successful management of ovarian cancer. The effects of resveratrol on the viability and self-renewal capacity of CSCs derived from A2780 human ovarian cancer cells were examined. The involvement of reactive oxygen species (ROS) was also investigated. At a non-toxic to normal human fibroblasts concentration, resveratrol effectively killed ovarian CSCs independently of ROS, while ROS-dependently impaired the self-renewal capacity of ovarian CSCs that survived resveratrol treatment. Our findings not only shed light on a novel mechanism of action for resveratrol but also suggest that resveratrol, or its analogs, may be useful for CSC-directed therapy against ovarian cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium dodecyl sulfate, Vetec, reagent grade, ≥98%
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
USP
Acetylcysteine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Acetylcysteine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, Vetec, reagent grade, 98%
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium pyrophosphate tetrabasic, ≥95%