Skip to Content
Merck
CN
  • Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO₂ nanowires.

Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO₂ nanowires.

Journal of hazardous materials (2014-10-14)
Hyun-Gyu Lee, Gopalan Sai-Anand, Shanmugasundaram Komathi, Anantha-Iyengar Gopalan, Shin-Won Kang, Kwang-Pill Lee
ABSTRACT

In this work, a new hybrid nanocatalyst, namely titanium dioxide (TiO2) composite nanowires, encapsulated with graphene (G) and palladium nanoparticles (Pd NPs) (designated as G-Pd@TiO2-CNWs), was prepared. In preparing the nanowires, a combination of electrospinning and hydrothermal approaches was employed. The visible-light-driven photocatalytic performance of G-Pd@TiO2-CNWs was investigated using the reduction of 4-nitrophenol (4-NP) as a model reaction. The results showed that G-Pd@TiO2-CNWs converted nearly 100% of 4-NP under visible light irradiation. The reaction kinetics of the photocatalytic reduction of 4-NP was studied by UV-vis spectrophotometry and the apparent rate constant was determined and compared with those for other supported TiO2 catalysts. Furthermore, the spent G-Pd@TiO2-CNWs could be recovered by simple centrifugation and reused. The work is expected to shed new light on the development of G-incorporated hybrid nanostructures for harvesting light energy and on the development of new photocatalysts for the removal of environmental pollutants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Supelco
Acetic acid, analytical standard
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required