Skip to Content
Merck
CN
  • Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

Journal of chromatography. A (2015-01-13)
Xiaojing Yang, Xuewu Xiong, Ji Cao, Baolei Luan, Yongjun Liu, Guozhu Liu, Lei Zhang
ABSTRACT

Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully.

MATERIALS
Product Number
Brand
Product Description

Supelco
N,N-Dimethylformamide, analytical standard
Supelco
Acetone, analytical standard
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
N,N-Dimethylformamide, Molecular Biology, ≥99%
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
N,N-Dimethylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dimethylformamide, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamide, biotech. grade, ≥99.9%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamide, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamide, ReagentPlus®, ≥99%
Supelco
Hexane, analytical standard
Supelco
Dichloromethane, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
3-Ethynylaniline, ≥98%