Skip to Content
Merck
CN
  • The epidermal growth factor receptor critically regulates endometrial function during early pregnancy.

The epidermal growth factor receptor critically regulates endometrial function during early pregnancy.

PLoS genetics (2014-06-20)
Michael J Large, Margeaux Wetendorf, Rainer B Lanz, Sean M Hartig, Chad J Creighton, Michael A Mancini, Ertug Kovanci, Kuo-Fen Lee, David W Threadgill, John P Lydon, Jae-Wook Jeong, Francesco J DeMayo
ABSTRACT

Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
Progesterone, meets USP testing specifications
Sigma-Aldrich
Progesterone, Vetec, reagent grade, 98%
Sigma-Aldrich
MOPS, BioUltra, Molecular Biology, ≥99.5% (titration)
Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
MOPS, Vetec, reagent grade
Sigma-Aldrich
MOPS, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Tetrazolium Blue Chloride, suitable for microbiology, ≥90% (T)
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate, ≥98.5% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Tetrazolium Blue Chloride, used in colorimetric determination of reducing compounds
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Egfr
Sigma-Aldrich
MISSION® esiRNA, targeting human EGFR
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder