Skip to Content
Merck
CN
  • MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc.

MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc.

European journal of cancer (Oxford, England : 1990) (2014-10-15)
Dongqin Chen, Jiayuan Huang, Kai Zhang, Banzhou Pan, Jing Chen, Wei De, Rui Wang, Longbang Chen
ABSTRACT

Epithelial-mesenchymal transition (EMT) has been reported to play a significant role in tumour metastasis as well as chemoresistance. However, the molecular mechanisms involved in chemotherapy-induced EMT are still unclear. MicroRNA (miRNA) expression and functions have been reported to contribute to phenotypic features of tumour cells. To investigate the roles of miRNAs in chemotherapy-induced EMT, we established two docetaxel-resistant lung adenocarcinoma (LAD) cell models (SPC-A1/DTX and H1299/DTX), which display EMT-like properties and gain increased invasion or migration activity. MiR-451 was found to be significantly downregulated in docetaxel-resistant LAD cells, and re-expression of miR-451 could reverse EMT to mesenchymal-epithelial transition (MET) and inhibit invasion and metastasis of docetaxel-resistant LAD cells both in vitro and in vivo. The proto-oncogene c-Myc was identified as a direct and functional target of miR-451, and further researches confirmed that overexpression of c-Myc which induced extracellular-signal-regulated kinase (ERK)-dependent glycogen synthase kinase-3 beta (GSK-3β) inactivation and subsequent snail activation is essential for acquisition of EMT phenotype induced by loss of miR-451. Furthermore, c-Myc was significantly upregulated in docetaxel-non-responding LAD tissues in comparison with docetaxel-responding tissues, and its expression was inversely correlated with miR-451 expression. This study first reported the involvement of miR-451/c-Myc/ERK/GSK-3β signalling axis in the acquisition of EMT phenotype in docetaxel-resistant LAD cells, suggesting that re-expression of miR-451 or targeting c-Myc will be a potential strategy for the treatment of chemoresistant LAD patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%