Skip to Content
Merck
CN
  • Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach.

Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach.

Stem cell research (2013-11-19)
Cecilia Granéli, Anna Thorfve, Ulla Ruetschi, Helena Brisby, Peter Thomsen, Anders Lindahl, Camilla Karlsson
ABSTRACT

Today, the tool that is most commonly used to evaluate the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro is the demonstration of the expression of multiple relevant markers, such as ALP, RUNX2 and OCN. However, as yet, there is no single surface marker or panel of markers which clearly defines human BMSCs (hBMSCs) differentiating towards the osteogenic lineage. The aim of this study was therefore to examine this issue. Stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was utilized to investigate differently expressed surface markers in osteogenically differentiated and undifferentiated hBMSCs. Labeled membrane proteins were analyzed by mass spectrometry (MS) and 52 proteins with an expression ratio above 2, between osteogenically differentiated and undifferentiated cells, were identified. Subsequent validation, by flow cytometry and ELISA, of the SILAC expression ratios for a number of these proteins and investigations of the lineage specificity of three candidate markers were performed. The surface markers, CD10 and CD92, demonstrated significantly increased expression in hBMSCs differentiated towards the osteogenic and adipogenic lineages. In addition, there was a slight increase in CD10 expression during chondrogenic differentiation. Furthermore, the expression of the intracellular protein, crystalline-αB (CRYaB), was only significantly increased in osteogenically differentiated hBMSCs and not affected during differentiation towards the chondrogenic or adipogenic lineages. It has been concluded from the present results that CD10 and CD92 are potential markers of osteogenic and adipogenic differentiation and that CRYaB is a potential novel osteogenic marker specifically expressed during the osteogenic differentiation of hBMSCs in vitro.

MATERIALS
Product Number
Brand
Product Description

Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Linoleic acid, technical, 58-74% (GC)
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
Gram′s safranin solution, suitable for microscopy
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Supelco
Acetic acid, analytical standard
Supelco
Linoleic acid, analytical standard
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Indomethacin, 98.5-100.5% (in accordance with EP)
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Linoleic acid, ≥98%
Sigma-Aldrich
Linoleic acid, liquid, BioReagent, suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%